Transient Nonisothermal Fully Coupled Wellbore/Reservoir Model for Gas-Well Testing, Part 2: Applications

Author:

Bahonar Mehdi1,Azaiez Jalel1,Chen Zhangxing John1

Affiliation:

1. University of Calgary

Abstract

Summary After the development of a numerical fully implicit nonisothermal wellbore/reservoir simulator in Part 1 of this study (Bahonar et al. 2010), this simulator is implemented for a close and detailed study of gas-well pressure-drawdown (DD) and -buildup (BU) tests. Overall, the developed simulator is an accurate and strong tool for design and analysis of transient gas-well testing, particularly for high- pressure/high-temperature (HP/HT) gas reservoirs. Several numerical results will be presented. This includes demonstration of the behaviour of the wellbore-fluid pressure, temperature, density, and velocity and an overall heat-transfer coefficient during DD or shut-in tests for nonisothermal reservoirs and conceptual comparisons with the isothermal counterparts. Thermal effects on the behaviour of derivative plots and the sandface-flow rate of deep nonisothermal gas reservoirs will be studied. A significant effect of neglecting the heat capacity of tubular and cement materials on the wellhead-temperature simulation, and thus transient well tests, will be demonstrated. A sample case to show that neglecting the thermal effects in the gas-well tests of composite reservoirs leads to unreliable results in well-testing analysis will be presented. Several other numerical experiments, including the presence of a variable wellbore-storage coefficient, gas backflow from the wellbore to the reservoir, and other thermal effects during the gas-well tests, are also presented. Hundreds of millions of dollars are spent every year on well testing around the world (Hawkes et al. 2001). A proper design and truthful interpretation of these tests can be achieved by a reliable coupled wellbore/reservoir simulator, which in turn can save a large portion of the required costs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3