Diffusion and Flow Mechanisms of Shale Gas through Matrix Pores and Gas Production Forecasting

Author:

Shi Juntai1,Zhang Lei2,Li Yuansheng1,Yu Wei3,He Xiangnan1,Liu Ning1,Li Xiangfang1,Wang Tao2

Affiliation:

1. SPE, China University of Petroleum at Beijing

2. Research Institute of Yanchang Petroleum Grouop Co. LTD

3. The University of Texas at Austin

Abstract

Abstract The transport mechanism of gas moving through matrix pores is the bottleneck of conquering the difficulties in shale gas development. The matrix pores can be divided into organic and inorganic matrix pores. The transport mechanism of shale gas in organic and inorganic matrix pores is different. However, the present gas transport model only focused on the gas transport in organic matrix pores, in addition, the impact of organic and inorganic mass ratio has been largely neglected by shale gas transport models in the literature, leading to an unclear recognition of shale gas production discipline and large derivation between prediction results by the present models and actual performance of shale gas wells. In this paper, both the pore size distribution and water distribution in shale matrix pores are investigated. Furthermore, a new diffusion-slippage-flow model in combination with the gas transport mechanism is proposed. Also, the organic content effect is considered and the range of Knudsen number is quantified. Finally, a gas production model based on this gas transport mechanism is derived and employed to reveal the discipline of shale gas production. The preliminary results illustrate that Knudsen diffusion is not suitable for shale gas reservoirs. This is because Knudsen number is generally less than 10, especially for such shale gas reservoirs with higher initial reservoir pressure. Gas moving through shale matrix pores to fractures is mainly divided into two forms: in organic matrix pores, both slip effect and transition diffusion mechanism are dominant; in inorganic matrix pores, the gas-water two-phase flow controls the gas transport mechanism because of the presence of water in these pores. The efforts of this work will provide a more accurate technique for forecasting shale gas production, and also give some insights into scientific evidence to the rational development of shale gas reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3