Risk Management and Optimization in Real-Time Noncondensable Gas Co-injection under Economic Uncertainty

Author:

Sibaweihi Najmudeen1,Trivedi Japan2

Affiliation:

1. University of Alberta

2. University of Alberta (Corresponding author)

Abstract

Summary When the oil price is volatile, maximizing steam allocation and noncondensable gas (NCG) is essential to ensuring a profit but reducing risk. Minimizing risk entails moving the distribution of lower tail returns closer to the expected return. Thus, there is a risk-reward tradeoff during optimization. Real-time risk-return optimization with first-principle models is computationally demanding. Sibaweihi et al. (2019) presented a real-time steam-assisted gravity drainage (SAGD) recovery optimization with varying steam availability workflow. The workflow cannot handle uncertainty, and the data-driven model may forecast out of the physical range of the model output parameters. As a result, data-driven process modeling incorporating physical or operational constraints and an optimization problem formulation that references a decision-makers' metrics to a benchmark is crucial. This study proposes data-driven input-output normalization to incorporate operating constraints based on their physical range. The workflow includes model training updating based on the concept of forgetting factor to adapt the data-driven model to the current state of the reservoir. A robust optimization (RO) problem scheme in which economic risk is mitigated by formulating the objective as a tradeoff of expected returns and risk is managed in real time. A modified Modigliani’s risk-adjusted performance has been implemented to minimize the possibility of selecting the wrong optimal risk-return tradeoff of nonsymmetric return realizations in this work. In this work, the risk is quantified through variance, minimum, semivariance (down side risk), and conditional-value-at-risk of the returns realizations because of oil price volatility. Application of the proposed workflow on a synthetic reservoir with steam NCG co-injection showed the data-driven calibrated model forecast performance shows a reasonable agreement with the synthetic reservoir throughout the optimization period. In addition, the optimization study with the proposed workflow also showed a net present value (NPV) increase of approximately 25–77% and a decrease in the cumulative steam-oil-ratio (cSOR) from 4.5 to 6.7% compared with the continuous steam injection base case. The reduction in cSOR indicates a lower steam requirement. An increase in methane sequestered demonstrates workflow ability to reduce greenhouse gas emissions while improving SAGD NCG co-injection key performance indicators.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference41 articles.

1. Aackermann, P. E . 2015. Stochastic Optimization and Risk Management in the Production Optimization of Oil Reservoirs. Master’s Thesis, Technical University of Denmark, Department of Applied Mathematics, Lyngby, Denmark.

2. Alexey . 2018. Major SAGD Projects in Canada. Sell Side Handbook. http://sellsidehandbook.com/2018/08/04/major-oil-sands-projects-in-canada (accessed13 December 2021).

3. Non-Condensable Gas Co-Injection with Steam for Oil Sands Recovery;Austin-Adigio;Energy,2019

4. Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes;Anderson;Ann Math Statist,1952

5. Consideration of Voidage-Replacement Ratio in Well-Placement Optimization;Awotunde;SPE Econ & Mgmt,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3