Development of a Novel and Computationally-Efficient Discrete-Fracture Model to Study IOR Processes in Naturally Fractured Reservoirs

Author:

Moinfar Ali1,Varavei Abdoljalil1,Sepehrnoori Kamy1,Johns Russell T.2

Affiliation:

1. The University of Texas at Austin

2. Pennsylvania State University

Abstract

Abstract Many naturally fractured reservoirs around the world have depleted significantly and improved oil recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies of discrete fracture modeling suffer from large simulation run times and the industry has not found applications for them yet, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed a novel discrete fracture model for an in-house compositional reservoir simulator that borrows the dualmedium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be angled or vertical, honoring the complexity of a typical fractured reservoir. Likewise, the new discrete fracture model does not need mesh refinement around fractures and offers computationally-efficient simulations compared to other discrete fracture models. Examples of water-flooding and gas injection are presented in this paper to demonstrate the accuracy, robustness, and applicability of the developed model for studying IOR processes in naturally fractured reservoirs. Simulations show that favorable rock wettability along with capillary pressure contrasts between matrix and fractures causes noticeable incremental oil recovery in water floods. Likewise, simulations of gas injection demonstrate that high-permeability fractures not only expedite gas breakthrough, but also increase segregation of gas towards the top of the reservoir, leading to very low sweep efficiency. Furthermore, oil recovery from naturally fractured reservoirs is found to be sensitive to the fracture inclination angle.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3