A Strain-Driven Model for Anisotropic Permeability Evolution of Shale and Coal Incorporating Creep Deformation, Anisotropic Internal Swelling/Shrinkage, and Gas Rarefaction Effects

Author:

Zeng Jie1,Guo Jianchun1,Liu Junchen2,Zhang Tao1,Zhao Zhihong1,Liu Jishan3,Chen Zhongwei4

Affiliation:

1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China

2. PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan, China

3. The University of Western Australia, Perth, Western Australia, Australia

4. The University of Queensland, Brisbane, Queensland, Australia

Abstract

Abstract Permeability of shale and coal is a main controlling factor for gas migration and is sensitive to effective stress, sorption/desorption-induced internal swelling/shrinkage (swelling/shrinkage at fracture/pore surfaces), and gas rarefaction effects. The dependence of gas permeability on effective stress and rarefaction effects has been extensively studied. However, the impacts of anisotropic strains and their time-dependent evolution (creep deformation) on permeability variation were still not fully understood, which makes it difficult to accurately predict permeability evolution and simulate gas transport, especially for deep coal. To fill this knowledge gap, a modified sugar-cube conceptual model that captures the structural anisotropy of coal and shale is used to develop a generic fully anisotropic strain-driven permeability model incorporating anisotropic creep deformation, directional internal matrix swelling/shrinkage, and gas rarefaction effects. The time-dependent creep deformation is described by the Nishihara quasi-static rheological model with elastic, viscoelastic, and visco-plastic strain elements. Unlike previous studies where anisotropic internal swelling/shrinkage is ignored or simulated by simply using three sets of independent Langmuir pressure and swelling strain constants, a mechanical-property-based swelling model is used to truly couple directional internal swelling/shrinkage strain with mechanical anisotropy according to the energy balance theory. The Beskok-Karniadakis model is employed to accurately characterize full-Knudsen-number-ranged gas rarefaction effects. The proposed permeability model is verified against coal permeability measurement data. Analyses results indicate that the permeability evolution in each direction shows unique features depending on the anisotropic structure, directional internal swelling, and mechanical properties. The permeability reduction contributed by three-stage creep deformation can be larger than 90%. Internal swelling strain variation in all directions also exhibits a noticeable impact on the magnitude of permeability, which is more obvious at the third stage. The overall influence of the gas rarefaction phenomenon turns heavier as time increase due to the continuous narrowing of flow channel. Due to its analytical feature, the proposed model is suitable for different permeability measurement conditions, including constant effective stress, constant confining pressure, and constant average pore pressure conditions. It can be easily incorporated into a more complex and realistic Multiphysics framework for field-scale simulation and well production prediction.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3