Air Permeability as a Function of Three Pore-Network Parameters

Author:

Thomeer J.H.1

Affiliation:

1. Shell Oil Co.

Abstract

Summary A new relationship between air permeability and three parameters describing a pore network is presented. The parameters are normally derived from the mercury/air capillary-pressure curve but may also be approximated from a petrographic analysis of thin sections. petrographic analysis of thin sections. Introduction In 1960 Thomeer showed that mercury/air capillary-pressure curves form a family. Each curve can be uniquely defined by specific values of three parameters of the equation that describe the family. The following parameters of the equation that describe the family. The following relationship between capillary pressure ( ) and bulk volume occupied by mercury ( ) was proposed: ............................(1) This equation describes a hyperbola when plotted on log-log paper. The values of and determine the location of its asymptotes, and the value of defines its shape. An individual capillary-pressure curve is uniquely defined by specific values of the following three parameters. = pore geometrical factor, reflecting the distribution of pore throats and their associated PV; = mercury/air extrapolated displacement pressure, indicating the pressure required for mercury to enter the largest pore throat, psia (kPa); and = percent bulk volume occupied by mercury at infinite capillary pressure, or total interconnected PV. Methods to determine the values of these parameters for a capillary-pressure curve are given in the referenced 1960 paper. Thomeer also evaluated both the significance and accuracy of determination of these parameters. Values were determined from capillary-pressure curves on 144 parameters. Values were determined from capillary-pressure curves on 144 diverse rock samples and correlated with air permeabilities measured on the same samples. This correlation showed a good relationship between air permeability and the parameters. In this paper, we propose improvements permeability and the parameters. In this paper, we propose improvements and refinements of this relationship and also suggest a method for estimating air permeability from a petrographic rock description. This method employs conversion of petrographic observations into equivalent capillary curve parameters. The Data Set Laboratory-measured porosities, air permeabilities, and mercury/air capillary-pressure curves on 279 rock samples were used. The samples were obtained from reservoirs in about 54 fields and consisted of 165 siliciclastics and 114 carbonates. All three laboratory measurements were performed on the same piece of rock. Air permeabilities represent routine performed on the same piece of rock. Air permeabilities represent routine measurements-i.e., they were not corrected for the Klinkenberg effect. For each capillary curve, the parameters, and were determined using the overlay procedure. Figs. 1 through 3 show the distribution of porosities, air permeabilities, and pore geometrical factors for the 279 samples separately permeabilities, and pore geometrical factors for the 279 samples separately for the total set, the carbonates, and the siliciclastics. JPT p. 809

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3