Integrated 3D Pore Pressure Characterisation and Modeling: Methodology & Application in Sisi Nubi Field, Mahakam - Indonesia

Author:

Sukapradja Aldyth1,Herdianto Roni1,Clark Jesse1,Adam Cepi1,Ashari Untung1,Saragih Baginda1,Sitorus Rio1,Giriansyah Bayu1

Affiliation:

1. Total E&P Indonesie

Abstract

Abstract Sisi-Nubi (SNB) is a gas field located 25 km offshore from the modern Mahakam delta with overpressure reservoirs being found typically in the Sisi Main Zone (SMZ) interval. SNB 3D seismic data indicates a velocity reversal in the SMZ interval, where the overpressure occurs. This velocity reversal has a relation with location of shelf break (distal area), where beyond shelf break the NTG value is sharply decreased. In the Mahakam area, overpressure gas reservoirs are one of the main issues in terms of drilling hazards. This has been historically managed by integrating surrounding wells' pressure data to predict the pore pressure profile that would be expected in an upcoming well. In new areas or where pressure data is lacking, it is difficult to predict the PP which can result either in heavier than necessary well architectures or an increased risk of taking a kick. An integrated pore pressure study has been carried out on the SNB field in order to provide three dimensional and spatially continuous pore pressure prediction using four different disciplines: sedimentology, reservoir geology, geophysics and geomechanics. The integrated pore pressure model over SNB is contained within a 3D geological model where the Eaton equation can be run using following datasets: sonic well data and sedimentological trend (Well Driven model), upscaled/resampled seismic interval velocity (seismic driven model) and hybrid method as compromise between two data sources involves using the seismic data as a soft trend for the extrapolated well data (hybrid model). Based on the blind well test analysis, the hybrid methodology shows the best result in terms of precision and 3D distribution and allows a continuous prediction of pore pressures even where there is poor well control. However, the others two methodologies could be used as an alternative when the available data is limited. This methodology gives a new approach with more integrated information in 3D pore pressure modeling that improved the classic pore pressure prediction in field Scale and/or basin scale. However, with the remaining uncertainty and discrepancy between the DT well scale velocity and the DT seismic velocity, and considering all detail well events important inputs (Gas evolution including long connection tests, kick, pressure test, HC bouyancy and other drilling events), collaboration with a strong 1D Pore Pressure synthesis will give a comprehensive result.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3