Improvement of the SAGD Process by Use of Steam-Foam: Design and Assessment of a Pilot Through Reservoir Simulation

Author:

Abdul Ghani Mohamad1,Ayache Simon Victor1,Batôt Guillaume1,Gasser-Dorado Julien1,Delamaide Eric2

Affiliation:

1. IFP Energies nouvelles

2. IFP Technologies Canada Inc

Abstract

Abstract Although SAGD is a very popular in-situ extraction method in Canada, this thermal process relies on huge energy and water consumption to generate the steam. Irregular growth of the steam-chamber due to heterogeneities further degrades its yield. Contact between the steam chamber and the overburden also leads to heat losses. The objective of this paper is to investigate how Foam Assisted-SAGD could mitigate these technical issues and improve the efficiency of the SAGD process. Compositional thermal reservoir simulations are used to simulate and analyze a Foam Assisted-SAGD pilot. The shear-thinning effect close to the wells is also accounted for. The simulations are run on a homogeneous model mimicking the Foster Creek project in Alberta, Canada. Several type of injection sequences have been analyzed in terms of foam formation, back-produced surfactants and cumulative Steam-Oil-Ratio. Results are compared with the original SAGD performance. In order to propagate the foaming surfactants throughout the steam chamber the injection sequence needs to be properly determined. A simple continuous Foam Assisted-SAGD injection would lead to an accumulation of surfactant between the wells due to gravity segregation, preventing the foam from acting on the upper part of the steam chamber. Furthermore surfactant production occurs after a few weeks due to the proximity of the producer and the injector. A proper injection strategy of the type SAGD/slug/SAGD/slug is found to delay the chemical breakthrough and increase the amount of surfactant retained in the reservoir while allowing the surfactant propagation throughout the steam chamber. After optimization the Foam Assisted-SAGD process appears to be technically promising.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3