Effect of Stress Shock and Pressurization/Depressurization Hysteresis on Petrophysical Properties of Naturally-Fractured Reservoir Formations

Author:

Civan F..1

Affiliation:

1. University of Oklahoma

Abstract

Abstract This paper presents a theoretically rigorous formulation and correlation of the effect of poroelasticity on stress-dependent petrophysical properties of naturally-fractured reservoirs, including porosity, permeability, relative permeability, and capillary pressure, by consideration of the stress shock effect across a critical effective stress and the pressurization/depressurization hysteresis. This model accounts for the deformation, transformation, deterioration, and collapse of the pore structure during pressurization and depressurization processes and their effects on the properties of naturally-fractured reservoir formations. A stress shock is shown to occur in naturally-fractured reservoir formations at a critical stress during transition between open and closed natural fractures in loading and unloading applications. The effect of the stress shock and pressurization/depressurization hysteresis on petrophysical properties of reservoir formations is formulated by means of a modified power-law equation derived from a phenomenological model referred to as a rate equation. The modified power-law equation is shown to alleviate the shortcomings of the ordinary power-law equation applied in many studies. The comprehensive model developed in this study is validated by means of various experimental data gathered by testing of samples from sandstone, carbonate, and shale reservoirs. The phenomenological parameters of the rock samples are determined for best match of experimental data. The scenarios examined in this study indicate that pressurization/depressurization hysteresis has a significant effect on the stress-dependent porosity and permeability of reservoirs. The model developed in this paper can describe the stress-dependent porosity and permeability of the fractured rock formations much more accurately than the commonly used empirical correlations. The accurate methodology presented for proper correlation of stress-dependent properties of reservoir formation rocks honors the slope discontinuity at a yield or critical effective stress. The stress-dependency of rock properties are described by the modified power-law expressions separately over the low stress region below the critical stress and the high stress region above the critical stress. The proposed data correlation methodology is proven to be highly effective in the analyses and correlations of the experimental data of various types of reservoir rock formations as indicated by the correlations achieved with significantly high coefficients of regressions very close to the unity.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3