Mathematical Simulation of Polymer Flooding in Complex Reservoirs

Author:

Bondor P.L.1,Hirasaki G.J.1,Tham M.J.1

Affiliation:

1. Shell Development Co.

Abstract

Abstract Simulation of polymer flooding in many complex reservoirs has requirements that preclude the use of either three-phase stream tube or two-phase finite-difference simulators. The development of a polymer flooding model used in a three-phase, polymer flooding model used in a three-phase, four-component, compressible, finite-difference reservoir simulator that allows the simulation of a variety of complex situations is discussed. The polymer model represents the polymer solution as a fourth component that is included in the aqueous phase and is fully miscible with it. Adsorption of polymer is represented, as is both (1) the resulting permeability reduction of the aqueous phase and (2) the resulting lag of the polymer injection front and generation of a stripped polymer injection front and generation of a stripped water bank. The effects of fingering between the water and polymer are taken into account using an empirical "mixing parameter" model. The resulting simulator is capable of modeling reservoirs with nonuniform dip, multiple zones, desaturated zones, gravity segregation, and irregular well spacing and reservoir shape. Two examples are presented. The first illustrates the polymer flooding of a multizone dipping reservoir with a desaturated zone due to gravity drainage. The second illustrates the flooding of a reservoir with a gas cap and an oil rim with polymer injection near the oil-water contact. In this example, the effects of nonuniform dip, irregular well spacing and field shape, and gravity segregation of the flow are all taken into account. The two examples presented illustrate the versatility of the simulator presented illustrate the versatility of the simulator and its applicability to a wide range of problems. Introduction The design of a polymer flood for a complex reservoir requires a model that represents the reservoir features that have a significant effect on the performance of the flood. These features may include the presence of a gas cap or a desaturated zone due to gravity drainage in a dipping formation, the presence of an aquifer, irregular well spacing and reservoir boundaries, multiple zones, reservoir heterogeneities, and a well performance that is limited by state proration, injectivity, and productivity. These reservoir features are being productivity. These reservoir features are being represented by most compressible, three-phase, three-dimensional simulators. However, to model polymer flood projects, it is necessary to include a polymer flood projects, it is necessary to include a conservation equation for the polymer, and to represent the adsorption of polymer, the reduction of be rock permeability to the aqueous phase after contact with the polymer, the dispersion of the polymer slug, and the non-Newtonian flow behavior polymer slug, and the non-Newtonian flow behavior of the polymer solution. PREVIOUS SIMULATOR DEVELOPMENT PREVIOUS SIMULATOR DEVELOPMENT Previous simulator development of polymer flooding has been reported in two different general categories: three-phase stream tube models and one- or two-phase, incompressible, finite-difference simulators. Jewett and Schurz developed a two-phase, multilayer Buckley-Leverett displacement simulator capable of modeling either linear or five-spot patterns. A mobile gas saturation also could be patterns. A mobile gas saturation also could be specified, but this was treated as void space and did not affect the flow characteristics of the system. Gravitational and capillarity effects were neglected. The residual resistance of the brine following a water slug was modeled as an increase in its viscosity; the viscous fingering of the brine through the polymer slug was treated by altering empirical relative permeability relationships to specify a more adverse mobility ratio. Slater and Farouq-Ali modeled five-spot patterns with a two-phase, two-dimensional, finite-difference simulator, neglecting gravity and capillarity. They obtained an empirical expression for the resistance factor of the porous medium as a function of a time-dependent mobility ratio. SPEJ P. 369

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3