Low Salinity Water Flooding Experiments and Interpretation by Simulations

Author:

Fjelde Ingebret1,Asen Siv Marie1,Omekeh Aruoture1

Affiliation:

1. IRIS

Abstract

Abstract Even though the proposed screening criteria for low salinity water flooding (LSWF) are fulfilled, improve recovery is not always obtained. The LSWF mechanisms are therefore still discussed. The objective for the study was to describe the brine-rock interactions at high and low salinity. Reservoir core plugs were flooded either by formation water, sea water and low salinity waters in succession or by low salinity water directly from initial water saturations. Effluent samples were analyzed for ionic concentrations and pH. Relative permeability (kr) and capillary pressure (Pc) curves were obtained at the core scale by history matching the experimental production and differential pressure across cores using a simulation tool. A developed two-phase model was used to predict the release of divalent cations from the rock during LSWF, and to relate this to the oil recovery. The high salinity water flood with formation water was found to give close to piston-like displacement, while the oil was produced over much longer periods in LSWF. The estimated kr- and Pc-curves indicated that the rock was water-wet in the high salinity floods and mixed-wet in the low salinity floods. The experimental results were in accordance with the modeling of the brine-rock interactions. When the formation water was replaced with the low salinity water, increase in the concentrations of divalent cations onto clay surfaces was predicted for the selected brine compositions. Higher concentrations of polar oil components can then be bonded to the clay surfaces by the divalent cations and make them less water-wet. It is concluded that the low salinity water altered the wetting state of the rock. The direction of alteration can be explained by ion exchange taking place on the clay surface. The low salinity water potential for improving recovery should be considered on a case by case basis based on the interactions between the formation brine, injected brines, oil components, and rock type.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3