Standalone Screen Design and Evaluation for Cased and Perforated Application in Unconsolidated Formations: The Role of Perforation Strategy and Sand Control Design on Well Productivity

Author:

Roostaei Morteza1,Mohammadtabar Mohammad2,Hosseini Seyed Abolhassan2,Velayati Arian2,Soroush Mohammad2,Mahmoudi Mahdi1,Porttin Nolan1,Mohammadtabar Farshad1,Izadi Hossein2,Alkouh Ahmad3,Fattahpour Vahidoddin1

Affiliation:

1. Variperm Energy Services

2. University of Alberta

3. College of Technical Studies

Abstract

Abstract Productivity of cased and perforated wellbores completed with standalone screen depends on the interactions of parameters such as perforation diameter, length, phasing and density, the gap between the casing and the standalone screen, and standalone screen aperture/pore size. Moreover, the permeability of the sand in the gap plays a major role in the overall productivity. This study aims at providing a numerical estimation of pressure drop for such completions. This study uses Computational Fluid Dynamics (CFD) in order to simulate the flow around a wellbore equipped with cased and perforated completion with standalone screen. Slotted liner was used as the standalone screen in this study. Details of such a complex completion were imported into the Finite Volume (FV) based numerical simulation via Computer-Aided Design (CAD). In addition to the geometrical design of the completion, different scenarios for the perforation stability, which affect the permeability of the perforation tunnel and result in potential fill-up of the annular gap between the slotted liner and perforations, were investigated. A large number of simulations (over 200 models) were completed to cover the different scenarios for perforation design and strategy along with different Open to Flow Area (OFA) values for the standalone slotted liner. Based on the results, completion efficiency is strongly changed by perforation and gap flow properties. The OFA for the standalone slotted liner completion has minor influence on the overall pressure drop if the gap between the casing and the standalone screen and the perforation is clean, unless the perforations are collapsed and the annular gap between the casing and slotted liner is filled up with sand. This is mainly because perforation parameters, such as penetration and diameter dominate the effect of all the other parameters, including slotted liner configuration. The results emphasize the effect of the completion geometry, perforation strategy, and opening size on the skin and productivity. Another main observation was the need to better understand the stability of the perforations and sanding potential from perforations, which dictate the permeability of the perforation and annular space. The results of this study highlight the comparative importance of different standalone screen designs and perforation parameters on well productivity. This study is the basis for optimizing the sand control and perforation strategy as an alternative to other completion types such as gravel packing in cased and perforated completions in vertical and slant wells.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3