Improving the Effectiveness of Diverters in Hydraulic Fracturing of the Wolfcamp Shale

Author:

Harpel Jennifer1,Ramsey Lee2,Wutherich Kevin2

Affiliation:

1. Parsley Energy, Inc.

2. Drill2Frac, Inc.

Abstract

Abstract A project was initiated in the Wolfcamp shale to reduce the operational complexity and costs associated with hydraulic fracturing. The goal was to use dissolvable diverter to increase fracturing stage lengths while maintaining an average cluster spacing similar to the current completion design without affecting well productivity. To ensure maximum effectiveness, a unique methodology was employed that uses reservoir properties along the lateral to create stage specific diverter strategies. The methodology used to design the diverter strategies begins with understanding well heterogeneity along the lateral. Estimations of minimum in situ stress at each cluster were combined with estimates of pressure increases caused by stress shadow both from previous stages and between treatment clusters to determine fracture breakdown pressures along the lateral. This data was used to selectively segregate the clusters into those that would be treated before diversion and those that would be treated after diversion. Additionally, calculations including hoop stresses and perforation friction were used to ensure pumping pressures remained in a range that increased the probability that clusters designed to take fluid after diverter were not prematurely broken down during the initial pumping treatment. This approach of engineered diversion was applied to three wells located in the Wolfcamp shale of the Midland Basin. The completion incorporated a designed stage length that averaged 315 ft with nine perforation clusters per stage using a single diversion drop. Typical well designs in this field contain stages that are 175 ft in length with five perforation clusters. Thus, this revised design constituted an eighty percent increase in stage length over conventional stage designs. The goal of the treatment was to increase stage length without affecting production. During the treatment of the new engineered diverter stages, there was clear indication that after the first portion of the fracture was completed and diverter had seated on the perforations, the fluid was effectively diverted to virgin rock. This is a positive indication that the stage-specific diverter design was effective. Additionally, when comparing production between the three wells in this study and conventionally stimulated offset wells, there was no appreciable difference in production. This case study represents one of the earliest applications of a fully engineered diversion strategy and will describe how lessons learned during this application can be applied to further improve economics and effectiveness of diverters in horizontal shale plays.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3