Estimation of Drained Rock Volume DRV and Pressure Depletion using Discrete Fracture Model and Complex Analysis Methods

Author:

Khanal Aadi1,Weijermars Ruud1

Affiliation:

1. Texas A&M University

Abstract

Abstract The objective of this study is to visualize the drained rock volume (DRV) and pressure depletion in hydraulically and naturally fractured reservoirs, using a high-resolution simulator to plot streamlines and time-of-flight contours that outline the DRV, based on computationally efficient complex potentials. A recently developed expression based on fast, grid-less Complex Analysis Methods (CAM) is applied to model the flow through discrete natural fractures with variable hydraulic conductivity. The impact of natural fractures on the local development of DRV contours and streamline patterns is analyzed. A sensitivity analysis of various permeability contrasts between natural fractures and the matrix is included. The results show that the DRV near hydraulic fractures is significantly affected by the presence of nearby natural fractures. The DRV location shifts according to the orientations, permeability and the density of the natural fractures. Reservoirs with numerous natural fractures result in highly distorted DRV shapes as compared to reservoirs without any discernable natural fractures. Additionally, the DRV shift due to natural fractures may contribute to enhanced well-interference by flow channeling via the natural fractures, as well as the creation of undrained rock volumes between the natural fractures. Complementary pressure depletion plots for each case show how the local pressure field changes, in a heterogeneous reservoir, due to the presence of natural fractures. The results from this study offer insights on how natural fractures affect the DRV and pressure contour plots. This study uses a fast grid-less and meshless high-resolution flow simulation tool based on CAM to simulate the flow in heterogeneous naturally fractured porous media. The CAM tool provides a practical/efficient simulation platform, complementary to grid-based reservoir simulators.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3