Affiliation:
1. Baker Hughes
2. PETRONAS Carigali Sdn Bhd
Abstract
Abstract
Increased global energy demand has forced the oil and gas industry to search for hydrocarbons in increasingly challenging locations such as high temperature, high pressure (HTHP) reservoirs. This paper presents the field performance of a new fit-for-purpose synthetic-based mud (SBM) used to drill an ultra-HTHP deep gas exploration well offshore Malaysia. The well was drilled to a total depth (TD) of 14, 380 ft (4, 383 m) and reached the highest recorded bottomhole temperature (BHT) of 488°F (253°C) in Southeast Asia. To overcome the anticipated drilling challenges in the extreme environments, the operator and service company collaborated to identify a thermally stable, high-density drilling fluid that met the operator's needs. The drilling fluid was formulated for a maximum density of 18 lb per gallon (ppg), but reached the Southeast Asia record of 19.1 ppg mud weight at TD. The use of dual weighting materials (barite and manganese tetraoxide) yielded lower plastic viscosity (PV) for the high-density mud, leading to improved hydraulics and lower equivalent circulating density (ECD). The drilling fluid encompassed excellent temperature stability with no weighting agent sag and no high-temperature gelation observed after remaining static for five days at BHT during wireline logging. In this respect, it eliminated the rig time spent for additional circulating or conditioning of drilling muds and fluid treatment cost. Moreover, the fluid also provided good wellbore stability with no non-productive time (NPT) from drilling fluid performance. Comparison of field data and laboratory results highlighted the benefits of competent drilling fluid design and testing. As a result of thorough planning and comprehensive laboratory testing, desirable drilling fluid properties were maintained despite extreme HTHP conditions, minimizing trips and operational costs.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献