Game Changer in Subsurface Flare Reduction

Author:

Al Rahbi Moosa Salim1,Al Sidairi Nada Abdullah1,Al Ghafri Amal Mohammed1,Al Ismaili Sultan Ahmed1,Al Rashidi Ahmed Sulaiman1,Awan Kamran Fahmeed1

Affiliation:

1. PDO

Abstract

Abstract In the fast-changing world of energy transition, The Subsurface (SS) Flare reduction project in the Gas Directorate (GD) of Petroleum Development of Oman (PDO) was kicked off beginning of 2021 to ensure continuity in growing our business and generating revenue while reducing the carbon footprint of our operations. The two main value drivers of this project were firstly to minimize HSE impact and reduce GHG emissions, in line with PDO goal towards net zero by 2050, and secondly to maximize hydrocarbon recovery. This is a first of a kind project in PDO as the GD is leading the way towards addressing subsurface flaring. We started the journey by mapping out the different flare contributors (post-frac, well testing, Flow Back Loop (FBL) units and Halite Clean out), quantifying their impact and identifying the big actors. Then, we worked with the different teams from Engineering, Well Services and Operations to build a 5-year work plan with a clear roadmap to reduce subsurface flaring by 60% in 5 years. In the first year (2021), we managed to reduce SS flaring by 37%. This reduction was accomplished by introducing two efficiency improvements which included a successful Flareless Halite Cleanout trail with a full-scale implementation plan, and the utilization of test separators in line with SMS units to verify the flared figures. This resulted in a 50% correction factor to the data on hand. Going forward, the focus will be on maturing the new technologies that will further reduce SS flare such as Green Completion, Well Head Compression (WHC) units, mobile flare gas recovery, etc. Given the complex nature of this project and the multidisciplinary efforts from Petroleum Engineers, Operations, Engineering, Well Services and New Technology, constructing a successful working plan to address this issue required effective collaboration and thinking outside of the box to find innovative solutions. As a result, we constructed a funnel of efficiency opportunities with a clear timeline including Green Completion, WHC, pre frac hook up, and mobile flare gas recovery units. Additionally organizational tools for enhancing efficiency were applied such as PPS (practical problem solving) and Goal Deployment methodologies. Such energy efficiency projects that reduce the GHG emissions with a streamlined process and identified involved stakeholders, help to better position the organizations to tackle the climate challenges. Moreover, they help to establish a better understanding of the current impact on climate and keeps an open eye for any new technology opportunity that can be materialized to reduce or eliminate GHG emissions. (Robinson & I. Russo, 2013)

Publisher

SPE

Reference8 articles.

1. Installing Low-Cost, Low-Pressure Wellhead Compression on Tight Lobo Wilcox Wells;Harms,2004

2. The Evolution of Green Completion in BP Khazzan Field;Harrasi,2021

3. Lessons Learned from Trial Testing Wellhead Gas Compressor Technology in a Challenging High Condensate Sandstone Environment;Al-Rabeh,2020

4. Zero Flaring - An Innovative Approach for Wells Acid Stimulation and Clean;Nazri,2019

5. Development of a Profitable Greenhouse Gas Emissions Reduction;Robinson,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3