A New Method To Predict the Performance of Gas-Condensate Reservoirs

Author:

Al-Shawaf Ali1,Kelkar Mohan2,Sharifi Mohammad3

Affiliation:

1. Saudi Aramco

2. University of Tulsa

3. Amirkabir University of Technology

Abstract

Summary Gas-condensate reservoirs differ from dry-gas reservoirs. The understanding of phase and fluid flow-behavior relationships is essential if we want to make accurate engineering computations for gas-condensate systems. Condensate dropout occurs in the reservoir as the pressure falls below the dewpoint, resulting in significant gas-phase production decreases. The goal of this study is to understand the multiphase-flow behavior in gas-condensate reservoirs and, in particular, to focus on estimating gas-condensate-well deliverability. Our new method analytically generates the inflow-performance-relationship (IPR) curves of gas-condensate wells by incorporating the effect of condensate banking as the pressure near the wellbore drops below the dewpoint. The only information needed to generate the IPR is the rock relative permeability data and a constant-composition-expansion (CCE) experiment. We have developed a concept of critical oil saturation near the wellbore by simulating both lean and rich condensate reservoirs and have observed that the loss in productivity caused by condensate accumulation can be closely tied to critical saturation. We are able to reasonably estimate re-evaporation of liquid accumulation by knowing the CCE data. We validated our new method by comparing our analytical results with fine-scale-radial-simulation-model results. We demonstrated that our analytical tool can predict the IPR curve as a function of reservoir pressure. We also developed a method for generating an IPR curve with field data and demonstrated its application with field data. The method is easy to use and can be implemented quickly. Another advantage of this method is that it does not require the knowledge of accurate production data including the varying condensate/gas ratio (CGR).

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3