Characterization of Ultrahigh-Molecular-Weight Oilfield Polyacrylamides Under Different pH Environments by Use of Asymmetrical-Flow Field-Flow Fractionation and Multiangle-Light-Scattering Detector

Author:

Dalsania Yogesh1,Doda Ankit1,Trivedi Japan1

Affiliation:

1. University of Alberta

Abstract

Summary Various types of ultrahigh-molar-mass polyacrylamides (HPAMs) and their copolymers and terpolymers used not only in enhanced oil recovery (EOR) but also in drilling, fracturing, water treatment, and tailing applications require an accurate description of polymer molar mass (Mw) and hydrodynamic size for their optimal design. The range of Mw for various types of available HPAMs is between 4 and 30 million g/mol and is typically determined by use of intrinsic-viscosity measurement. Molecular-weight distribution (MWD) cannot be determined because neither standard with low polydispersity index (PDI) nor gel-permeation-chromatography (GPC) or size-exclusion-chromatography (SEC) techniques exist today for such ultrahigh-molar-mass polymers. Moreover, the solution environment in underground reservoirs, characterized by high temperatures, pH values, and the presence of monovalent and divalent ions, may often lead to changes in polymer-macromolecular conformation. Current techniques, SEC, ultraviolet-visible measurements, and liquid chromatography, are not capable of accurately investigating these complex macromolecular structures for various reasons. In this paper, the asymmetrical-flow field-flow fractionation (AF4) system was used to fractionate four different ultrahigh-molecular-weight HPAM samples, varying in molar mass and commercially used for oilfield applications, in various carrier pH values ranging from 12 to 3 (pH values of 12, 7.4, and 3). The system uses field-flow fractionation (FFF), a family of analytical techniques developed specifically for separating and characterizing macromolecules, colloids, and particles. The theoretical separation range for AF4 is between 103 to 1012 g/mol. Other advantages over conventional GPC/SEC include minimum shear degradation, mild operating conditions, and no sample loss caused by adsorption. The flow system was equipped with a multiangle-light-scattering (MALS) and refractive-index (RI) detectors to measure molar mass and radius of gyration (Rg). The results show that the observed molecular weight of the polymer aggregate increased substantially as the pH value of the carrier solution decreased from 12 to 3, especially for higher-molar-mass polymers. The sample Rg showed the opposite trend, decreasing as the pH of the carrier solution changed from basic to acidic. For ultrahigh molecular HPAM at high pH, a narrower molar mass and radius distribution was observed with disaggregated molar mass and increased branching or swelling (therefore larger hydrodynamic radius). Use of this direct separation and measurement technique can improve understanding of polymer-macromolecular structure and corresponding changes in the reservoir brines.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3