Scale Up of Pore-Network Models into Reservoir Scale: Optimization of Inflow Control Devices Placement

Author:

Bashtani Farzad1,Irani Mazda1,Kantzas Apostolos2

Affiliation:

1. Ashaw Energy

2. University of Calgary

Abstract

Summary Improvements to more advanced tools, such as inflow control devices (ICDs), create a high drawdown regime close to wellbores. Gas liberation within the formation occurs when the drawdown pressure is reduced below the bubblepoint pressure, which in turn reduces oil mobility by reducing its relative permeability, and potentially reducing oil flow. The key input in any reservoir modeling to compare the competition between gas and liquid flow toward ICDs is the relative permeability of different phases. Pore-network modeling (PNM) has been used to compute the relative permeability curves of oil, gas, and water based on the pore structure of the formation. In this paper, we explain the variability of pore structure on its relative permeability, and for a similar formation and identical permeability, we explain how other factors, such as connectivity and throat radius distribution, can vary the characteristic curves. By using a boundary element method, we also incorporate the expected relative permeability and capillary pressure curves into the modeling. The results show that such variability in the pore network has a less than 10% impact on production gas rates, but its effect on oil production can be significant. Another important finding of such modeling is that providing the PNM-created relative permeabilities may provide totally different direction on setting the operational constraints. For example, in the case studied in this paper, PNM-created relative permeability curves suggest that a reduction of flowing bottomhole pressure (FBHP) increases the oil rate, but for the case modeled with a Corey correlation, changes in FBHP will not create any uplift. The results of such work show the importance of PNM in well completion design and probabilistic analysis of the performance, and can be extended based on different factors of the reservoir in future research. Although PNM has been widely used to study the multiphase flow in porous media in academia, the application of such modeling in reservoir and production engineering is quite narrow. In this study, we develop a framework that shows the general user the importance of PNM simulation and its implementation in day-to-day modeling. With this approach, the PNM can be used not just to provide relative permeability or capillary pressure curves on a core or pore- scale, but to preform simulations at the wellbore or reservoir scale as well to optimize the current completions.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3