Imaging Texture and Porosity in Mudstones and Shales: Comparison of Secondary and Ion-Milled Backscatter SEM Methods

Author:

Milner M..1,McLin R..1,Petriello J..1

Affiliation:

1. TerraTek

Abstract

Abstract Observations from a number of unconventional reservoirs lead us to conclude that four major pore types exist in fine-grained reservoir and non-reservoir rocks, that they are effectively connected, and that pore sizes from nanometers to microns must be considered when evaluating size distributions. This paper uses SEM imaging of Haynesville, Horn River, Barnett and Marcellus Shales to illustrate that pore types other than those hosted by organics are present in unconventional shale gas reservoirs, and that they are continuous and connected to kerogen-hosted pores. In addition, we present evidence that the maximum size of pores originating in organic matter is determined by the size of the kerogen mass (in the case of organic particles) or the geometry of enclosing crystals (in the case of amorphous, pore-filling kerogen). Pairs of secondary and ion-milled backscatter SEM images address the misconception that large pores observed in secondary electron images are grain pullouts. 2-D image analysis and 3-D volumetric reconstructions to study pore distributions should take rock microtexture and the various pore types into consideration. A combined method using thin section textural analysis, XRD, and SEM imaging is recommended to address scaling issues when choosing samples for 2-D and 3-D volumetric analysis.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3