A Novel Method of Removing Emulsion Blockage after Drilling Operations Using Thermochemical Fluid

Author:

Alade Olalekan1,Mahmoud Mohamed1,Hassan Amjed1,Murtaza Mobeen1,Shehri Dhafer Al1,Al-Nakhli Ayman2,Bataweel Mohammed2

Affiliation:

1. King Fahd University of Petroleum & Minerals

2. Saudi Aramco

Abstract

Summary A novel approach to exploit heat and pressure generated from the exothermic reactions of the aqueous solution of thermochemical reactants, in removing emulsion blockage induced by oil-based mud (OBM) has been investigated. The proposed technology essentially concerns raising the temperature and pressure of the formation above the kinetic stability of emulsions using thermochemical fluid (TCF). From the batch experiments, to assess the energetics of the thermochemical reaction, it was observed that the temperature of the system could be raised above 170°C at a pressure of 1,600 psi. The chemical can be effectively applied under different operating temperatures Tr = 20, 40, 55, and 100°C without significant effect on the heat and pressure generation. The specific energy per unit volume of the reaction is equivalent to ≈370 MJ/m3 within the operating conditions. OBM was prepared and used as the damaging fluid. A TCF was injected into the damaged core sample for cleaning. Permeability and porosity change of the treated core was tested using nuclear magnetic resonance (NMR) to monitor the efficiency of the TCF injection. Ultimately, injecting 1 pore volume (PV) of the TCF removed approximately 72% of the OBM-based emulsion from the core sample. In addition, permeability of the core sample increased from 120 to 800 md, while the porosity increased from 20 to 21.5% after treatment. Moreover, the pressure profile, observed during the flooding experiment, showed that no precipitation or damage was induced during the TCF flooding. Therefore, it is envisaged that the in-situ heat generation can mitigate the emulsion blockage problem and offer advantages over the existing methods considering environmental friendliness and damage removal efficiency.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3