Evaluation of the Technical and Economic Feasibility of CO2 Sequestration and Enhanced Coalbed Methane Recovery in Texas Low-Rank Coals

Author:

Hernandez Gonzalo,Bello Rasheed Olusehun,McVay Duane Allen1,Ayers Walter Barton1,Rushing Jay Alan2,Ruhl Stephen K.2,Hoffmann Michael F.2,Ramazanova Rahila I.1

Affiliation:

1. Texas A&M University

2. Anadarko Petroleum Corp.

Abstract

Abstract Carbon dioxide (CO2) from energy consumption is a primary source of anthropogenic greenhouse gas. Injection of CO2 in coalbeds is a plausible method of reducing atmospheric emissions, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. The objective of this research is to determine the technical and economic feasibility of CO2 sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, deterministic and probabilistic simulation studies, and economic evaluations. We evaluated both CO2 and flue gas injection scenarios. In this study coal core samples and well transient test data were obtained for characterization of Texas low-rank coals. Simulation studies evaluated the effects of well spacing, injectant fluid composition, injection rate, and dewatering on CO2 sequestration and ECBM recovery. Probabilistic simulation of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals can store 1.27 to 2.25 Bcf of CO2 with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of 50% CO2 - 50% N2 injection in the same 80-acre 5-spot pattern indicate that these coals can store 0.86 to 1.52 Bcf of CO2, with an ECBM recovery of 0.62 to 1.10 Bcf. Simulation results of flue gas injection (87% N2 - 13% CO2) indicate that these same coals can store 0.34 to 0.59 Bcf of CO2 at depths of 6,200 ft, with an ECBM recovery of 0.68 to 1.20 Bcf. Economic modeling of CO2 sequestration and ECBM recovery for 100% CO2 injection indicates predominately negative economic indicators for the reservoir depths and well spacings investigated, using natural gas prices ranging from $2 to $12 per Mscf and CO2 credits based on carbon market prices ranging from $0.05 to $1.58 per Mscf CO2 ($1.00 to $30.00 per ton CO2). Injection of flue gas (87% N2 - 13% CO2) results in better economic performance than injection of 100% CO2. Moderate increases in either gas prices or carbon credits could generate attractive economic conditions that, combined with the close proximity of many CO2 point sources near unmineable coalbeds, could generate significant CO2 sequestration and ECBM potential in Texas low-rank coals. Introduction Greenhouse gas emissions potentially constitute a major environmental problem. Texas emits approximately 255,651,224 tons[1] of CO2 annually, which is about 10% of the total emitted in the United States. These emissions are mostly from the industrial and electric power sector. Any method that reduces net CO2 emissions would help mitigate the global greenhouse effect. CO2 sequestration in coals is one method that could help achieve this objective. CO2 injected in coal beds may have the dual benefits of CO2 disposal and enhanced coalbed methane recovery. CO2 injection could improve methane recovery and help maintain reservoir pressure, thus reducing operational costs.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3