Effect of Spontaneous Formation of Nanoparticle Stabilized Emulsion on the Stability of a Displacement

Author:

Aminzadeh B..1,DiCarlo D. A.1,Roberts M..1,Chung D. H.1,Bryant S. L.1,Huh C..1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Injecting nanoparticles into the subsurface can have a potential impact on altering both oil recovery and/or CO2 sequestration. In this work we conduct core floods in which a CO2-analogue fluid (n-octane) displaces brine with and without dispersed nanoparticles. We find that the floods with nanoparticles cause a greater pressure drop, and a change in flow pattern compared to the floods without. Emulsion formation is inferred by measuring the saturation distribution and pressure drop along the core. The results suggest that nanoparticle stabilized emulsion is formed during a drainage process (at low shear rate condition) which acts to reduce the mobility of the injected fluid. We also perform imbibition experiments, where the nanoparticle dispersion in brine displaces n-octane. Here we observe little difference in the flow pattern and pressure drop as a function of nanoparticle concentration. There is an observed accumulation of nanoparticles at the imbibition front, which suggests that nanoparticles may be used as a tracer of the displacement front.

Publisher

SPE

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3