Computation of Surge-Pressure-Wave Propagation During Cementation Process

Author:

Assaad Wissam1,Di Crescenzo Daniele2,Murphy Darren2,Boyd John2

Affiliation:

1. Shell Global Solutions International B.V.

2. Shell Exploration and Production Company

Abstract

Summary In this paper, we present a method of modeling surge pressures and wave propagation that can occur during well execution. The surge pressures have an effect on formations [i.e., formation fracture resulting in mud losses and nonproductive time (NPT)]. Knowing the amplitude of surge pressure in advance can lead to operation redesign to avoid losses. Swab- and surge-pressure waves can occur at numerous events during well execution. For example, during liner operations, pressure waves can occur at dart landing or plug shearing, liner-hanger setting, or clearing a plugged shoe-track component. It is possible for surge-pressure waves to create fractures in shale and sand layers (i.e., when surge-pressure-wave amplitude exceeds formation fracturing resistance). A transient-state physical model is built to compute pressure-wave propagation through drillstring, casing, and open hole to predict the amplitude of a surge-pressure wave and to warn when a fracture might occur in the formation, to avoid mud losses and NPT. In the model, continuity and energy partial-differential equations (PDEs) are built for a cylindrical fluid element contained in an elastic hollow cylinder. The method of characteristics is applied to convert the PDEs to ordinary-differential equations (ODEs). The ODEs are solved numerically to compute pressure distribution along well depth and in time. The model is implemented as a graphical-user-interface (GUI) tool to be used by drilling engineers at the design phase of a well to avoid losses. The GUI tool is targeted to address different scenarios that take place during the cementation process. To date, the transient-state physical model has been applied successfully in various applications, such as monodiameter technology, running casing, and perforating operations. Two cases are studied, one for a well in the Gulf of Mexico (GOM) where mud losses have been reported, and the other for a well in Malaysia where no mud losses have occurred. Pressure-wave computations are performed with the GUI tool for the two cases. The results of both cases are presented in this paper and show that formation fracture can be predicted by the GUI tool and subsequent losses can be avoided.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3