Experiments on Mixing During Miscible Displacement in Porous Media

Author:

Brigham William E.1,Reed Philip W.1,Dew John N.1

Affiliation:

1. Continental Oil Co.

Abstract

Abstract The paper describes experiments on miscible displacement in various porous media and the results of these experiments. Both glass bead packs and natural cores were used. Bead diameters varied from 0.044 to 0.47 mm, and pack lengths varied from 83 to 678 cm. Natural cores used were Berea and Torpedo sandstone. By taking samples as small as 0.5 cc and using refractive index for analysis, the data on break through curves could be plotted to within ± 0.5 per cent. To plot the data correctly on error function paper, a parameter (Vp - v)/vV was used which allowed for the predicted growth of the front as it moved past the observer. The change in the amount of mixing (length of mixed zone) was studied by varying velocity, length of travel, bead size, viscosity ratio and pack diameter. When the displaced material was less viscous than the displacing material (favorable viscosity ratio), these changes were adequately predicted by theory. When natural cores were used, rather than glass beads, the amount of mixing was greatly increased - also qualitatively predicted by theory. In experiments with favorable viscosity ratios in which the ratio was varied from 0. 175 to 0. 998, it was found that the rate of mixing was changed by a factor of 5. 7. Thus, the rate of mixing is strongly affected by viscosity ratio, even when the theoretical error function relationship for mixing is valid. Experiments using fluids with viscosity ratios near 1.0 showed that the instability effects of even a slightly unfavorable viscosity ratio (1.002) caused disproportionately more elongated breakthrough curves than found with a favorable viscosity ratio (.998). When the viscosity ratio was as high as 5.71 these instability effects were much more pronounced, as evidenced by the shape of the breakthrough curve. The displacements at viscosity ratios above 1.0 no longer followed the theoretical error function curve.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3