Emulsion Interface Model – From Science to Implementation

Author:

Vai Yee Hon1,Deguillard Estelle2,Mohd Saaid Ismail3,Chin Hsia Ivy1,Mohd Fauzi Noor Amira3,Van Male Jan2,Handgraaf Jan-Willem2

Affiliation:

1. PETRONAS

2. Siemens Digital Industry Software Netherlands B.V.

3. Universiti Teknologi PETRONAS

Abstract

Abstract Using computational chemistry solutions, a practical software tool is developed to simulate emulsion system, thereby gaining comprehensive information from atomistic level to manage oil field emulsion. The software tool is a revolutionary emulsion interface model, established based on physical chemistry of surface tension and torque concepts, coupled with solution of interface bending rigidity with relation to interface energy. With solid theoretical foundation, the tool is reliable and proven for field application. The emulsion interface model simulates emulsion behavior in molecular dynamics to predict emulsion type and stability in the presence of various surface-active agents. It comprises of two key mathematical approaches. The first approach is used to assess the surface mechanical coefficients (surface tension and torque) to infer the type of emulsion formation: water-in-oil emulsion, oil-in-water emulsion or microemulsion. The second approach is used to estimate the emulsion interface bending rigidity to deduce interface stability. Digital oil model with accurate representation of atomistic components of actual crude oil is constructed as input to the simulation. The emulsion interface model is verified with both published data on pure oil emulsion system and with actual data on oilfield emulsion system from offshore field in Malaysia. Good agreement between simulations and field results is achieved. This indicates that the main characteristics and physics of emulsion behavior are captured correctly in the emulsion interface model. The duration for selecting effective surface-active agents to manage oilfield emulsion can be reduced up to 90%. The main advantage of the tool lies in its dual-functionality applicable for both emulsifier selection for enhanced oil recovery and demulsifier selection for production flow assurance. Ultimately, the application of emulsion interface model has successfully enabled step-change in oilfield emulsion management via an efficient and reliable scientific based digital platform. It is a powerful tool with potential to exclusively use simulation to design molecular composition of surface-active agent for novel chemical production.

Publisher

SPE

Reference20 articles.

1. The First Rideal Lecture. Microemulsions, a field at the border between lyophobic and lyophilic colloids;Overbeek;Faraday Discuss. Chem. Soc.,1978

2. Microemulsions;Overbeek;Proceedings,1986

3. Microemulsions and the Flexibility of Oll / Water Interfaces M * V;Gennes,1982

4. Simulating the effect of surfactant structure on bending moduli of monolayers;Rekvig;J. Chem. Phys.,2004

5. Some Correlating Principles of Detergent Action;Preston;J. Phys. Colloid Chem.,1948

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3