A Proposed Method for Simulation of Rate-Controlled Production Valves for Reduced Water Cut

Author:

Moradi Ali1,Moldestad Britt M. E.1

Affiliation:

1. University of South-Eastern Norway

Abstract

SummaryIn recent years, the advancement of horizontal-well technology has played a major role in making oil production economically feasible from many reservoirs. One of the major problems that can reduce the efficiency of using horizontal wells is gas and water coning caused by the heel-toe effect and heterogeneity along the well. To tackle this problem, Equinor’s autonomous inflow-control device (ICD) (AICD), known as rate-controlled production (RCP) valves, is widely used today. RCP valves can effectively delay the early water breakthrough and partially choke back water autonomously after water breakthrough. To fulfill a suitable design of a long horizontal well with the RCP completion, a detailed understanding of multiphase-flow behavior from the reservoir pore to the wellbore and production tubing is needed. Coupling a dynamic multiphase-flow simulator such as the OLGASM (Schlumberger Limited, Sugar Land, Texas, USA) simulator with the near-wellbore reservoir module such as the OLGA ROCX module provides a robust tool for achieving this purpose. However, there is no predefined option in the OLGA simulator for implementing the autonomous behavior of the RCP valves directly. Therefore, creating a model of oil production by considering well completion with the RCP valves in the OLGA simulator is challenging. In the previous works, this has been performed by using the Proportional Integral Derivative (PID) Controller option in the OLGA simulator, which controls the opening of an equivalent orifice valve according to the fixed value of the water cut. However, because of the performance of the PID Controller using a fixed setpoint and the difficulties in properly tuning the PID Controller, choosing this option leads to a large degree of inaccuracy in the simulation models. In this paper, by proposing a novel method with a developed mathematical model and a control function for the RCP valves, the autonomous behavior of these valves is implemented in the OLGA simulator. In this new approach, the control signals are calculated using the variation of water cut and introduced to the OLGA simulator through the Table Controller option instead of the PID Controller. The presented approach in this paper can be used for the simulation of water-cut (or gas/oil-ratio) reduction potential of all RCP-type AICDs in reservoirs with different characteristics. However, to explain the procedure of this approach in detail, the near-well oil production from Well 16/2-D-12 in the Johan Sverdrup Field (JSF) considering RCP completion is modeled as a case study. In this study, the simulation model is developed using one of the commonly used types of RCP valves called the TR7 RCP valve. Version 2016.1.1 of the OLGA simulator/ROCX module is used (Schlumberger 2016). According to the simulation results, compared with using ICDs, by the completion of Well 16/2-D-12 with RCPs, the water cut, water-flow rate, and accumulated water production can be reduced by 2.9, 13.3, and 12.1%, respectively, after 750 days. The results also showed that by using the proposed approach, the autonomous behavior of the RCP valves according to the water-cut variations can be appropriately implemented in the OLGA simulator. This can help engineers and researchers to achieve a better design of a long horizontal well using the RCP completion. Consequently, using this approach can be beneficial for improving technology, optimizing production, minimizing risk, and reducing costs in oil recovery.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3