Machine Learning Model for Drilling Equipment Recommender System for Improved Decision Making and Optimum Performance

Author:

Kloucha Chakib K.1,El Yossef Bassem S.1,Al Hamlawi Imad1,M Salim Muzahidin2,Pausin Wiliem2,Pal Anik2,Mustapha Hussein2,Shah Soumil2,Hussein Ahmad Naim2

Affiliation:

1. ADNOC

2. Schlumberger

Abstract

Abstract The oil industry, in its constant strive to maximize gains out of operational data is constantly exploring new horizons where to combine the latest advances in data science and digitalization, into the areas where key decisions to drive economical and operational decisions reside with an aim at optimizing the capital expenditure through sound decision making. High volume operational data has been recognized as hiding many opportunities where the captured details these repositories that include real time logs and bit run summaries, provide a clear opportunity where to extract insights to support optimized decisions in terms of equipment selection to achieve the desired operational objectives. Current possibilities within data science have opened the possibilities through viable solutions, which in this case, aims at providing advise on which equipment in terms of BHA and Bits to select, that would yield the desired outcome for a drilling run. The whole exercise being based on evidence gathered from previous runs where the details for the equipment, the relevant well characteristics, and the observed rates of penetration and the used parameters, are taken into consideration to provide the optimum combination to be implemented in new runs. The present study describes the methodology in terms of data utilization, data science method development and solution deployment, with the associated issues that had to be addressed in order to provide a viable solution in terms of data utilization, technical validity and final user utilization, as well as a series of recommendations to be addressed within any such endeavors to assure the value addition.

Publisher

SPE

Reference8 articles.

1. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions;Adomavicius;IEEE transactions on knowledge and data engineering,2005

2. A new study of using temporality and weights to improve similarity measures for link prediction of social networks;Aghabozorgi;Journal of Intelligent & Fuzzy Systems,2018

3. Bayesian reasoning and machine learning;Barber,2012

4. Machine learning & artificial intelligence in the quantum domain: a review of recent progress;Dunjko;Reports on Progress in Physics,2018

5. Reducing Oil Well Downtime with a Machine Learning Recommender System;Madrid,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3