Conventional Tight Gas Field Through Unconventional Eyes: Data Analytics Help to Optimize Fracture Design and Operations

Author:

Yuan Roger1,Bahri Khalfan1,Veeken Cornelis1,Shoaibi Sultan1

Affiliation:

1. Petroleum Development Oman

Abstract

Abstract Deep tight gas fields in Northern Oman are often compared to and approached with unconventionals due to their tight matrix properties and the necessity of employing hydraulic fracturing to deliver productivity. Complicated by operational constraints and field histories, hydraulic fracture effectiveness – how fracture stimulation delivers relative to how much matrix flow contributes to production – remains a puzzle and a challenge. This further affects how to optimize existing completion and stimulation strategy in order to improve the value proposition. In this study, we review the fracture and production performance of a mature gas field in Northern Oman. Integrating data of various technical disciplines, we re-examine a wealth of cumulative field data over two decades of operations with an aim to identify the key enablers for fracture placement and production. With integration of reservoir properties, geomechanics, and time-lapse production profiles, we identify that geomechanics plays a key role in controlling reservoir fraccability and the placement of hydraulic fractures. While hydraulic fracture containment within the Barik formation has been well recognized and considered a given in multi-staged fractured vertical wells, the creation of fracture heights is found dependent on the in-situ stress conditions and pumping metrics, which further links to productivity. Such inter-relationship could potentially be utilized to optimize fracture performance by a refined placement strategy. With big data, the common technical opinions that normally arise from a deterministic approach on limited data can be better visualized and addressed. The statistical strength of the analysis leads to improved understanding of the subsurface complexity, interaction of reservoir quality with completion design, and a suite of future optimization opportunities.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3