Multi-Component Sorbed-Phase Considerations for Shale Gas-in-place Calculations

Author:

Ambrose Ray J.1,Hartman Robert C.2,Akkutlu I. Yucel1

Affiliation:

1. The University of Oklahoma

2. Weatherford Labs

Abstract

Abstract Recent studies have shown that shale gas industry is incorrectly determining gas-in-place volumes in reservoirs with a large sorbed-gas by not properly accounting for the volumes occupied by the sorbed and free gas phases. Scanning electron microscopy (SEM) has discovered nanopores in organic-rich shale with sizes typically in 3-100 nm range, although pores less than 3 nm cannot be captured with current SEM technology. At that scale the adsorption layer thickness is not infinitesimally small. Thus a portion of the total pore volume would be occupied by a finite-size adsorption layer and not available for the free gas molecules. In SPE 131772, we proposed a volumetric method which accounts for the volumes taken up by the free gas and by the adsorption layer. The study was based on a single-component Langmuir adsorption model, however. This paper extends the discussions on the adsorption layer effect for multi-component natural gases with a sorption model also known as extended-Langmuir. We combine the extended-Langmuir adsorption isotherm with volumetrics and free gas composition to formulate a new gasin-place equation accounting for the pore space taken up by a multi-component sorbed phase. The method yields total gas-inplace predictions, which suggest that an adjustment is necessary in volume calculations, especially for gas shales with high C2+ composition and high in total organic content. Using typical values for the parameters, calculations show a 20% decrease in total gas storage capacity compared to that using the conventional approach. The adjustments need to be done on the free gas volume is 18% more than the value using single-component (methane) case. The role of multi-component adsorption is more important than previously thought. The new methodology is therefore recommended for shale gas-inplace calculations.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3