Evaluation of the Salinity Gradient Concept in Surfactant Flooding

Author:

Hirasaki G.J.1,van Domselaar H.R.2,Nelson R.C.1

Affiliation:

1. Shell Development Co.

2. Koninklijke/Shell E and P Laboratorium

Abstract

Abstract Salinity design goals are to keep as much surfactant as possible in the active region and to minimize surfactant possible in the active region and to minimize surfactant retention. Achieving these is complicated becausecompositions change as a result of dispersion, chromatographic separation of components distributed among two or more phases, and retention by adsorption onto rock and/or absorption in a trapped phase-.in the presence of divalent ions, optimal salinity is not constant but a function of surfactant concentration and calcium/sodium ratio: andthe changing composition of a system strongly influences transport of the components. A one-dimensional (ID) six-component finite-difference simulator was used to compare a salinity gradient design with a constant salinity design. Numerical dispersion was used to evaluate the effects of dispersive mixing. These simulations show that, with a salinity gradient, change of phase behavior with salinity can be used to advantage both to keep surfactant in the active region and to minimize retention. By contrast, under some conditions with a constant salinity design. it is possible to have early surfactant breakthrough and/or large surfactant retention. Other experiments conducted showed that high salinity does retard surfactant, and, if the drive has high salinity. a great amount of surfactant retention can result. The design that produced the best recovery had the water flood brine over optimum and the drive under optimum; the peak surfactant concentration occurred in the active region and oil production ceased at the same point. Introduction The phase behavior of surfactant/oil/brine systems for different salinities is shown in Fig. 1. Low salinities. called "underoptimum" or "Type II(−)" phase behavior, are shown at the top of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the aqueous phase. predominantly into the aqueous phase. High salinities, called "overoptimum" or "Type II(+)" phase behavior, are shown at the bottom of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the oleic phase. When the oleic phase predominantly into the oleic phase. When the oleic phase has a low oil concentration, the oil is said to be "swollen" by the surfactant and brine. At moderate salinities, the system can have up to three phases and is called "Type III." This is illustrated in the phases and is called "Type III." This is illustrated in the middle of Fig. 1. The salinity at which the middle phase has a WOR of unity is called "optimal salinity" because the lowest interfacial tensions (IFT's) usually occur near this salinity. As salinity increases, there is a steady progression from Type II(−) to Type III to Type II(+) phase behavior. The middle-phase composition moves from the brine side of the diagram to the oil side. The two-phase regions that correspond to the Type II(−) and Type II( +) systems can be seen above the three-phase region in Fig. 1.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3