When Petrophysics Meets Big Data: What can Machine Do?

Author:

Xu Chicheng1,Misra Siddharth2,Srinivasan Poorna1,Ma Shouxiang3

Affiliation:

1. Aramco Services Company: Aramco Research Center

2. The University of Oklahoma

3. Saudi Aramco

Abstract

Abstract Petrophysics is a pivotal discipline that bridges engineering and geosciences for reservoir characterization and development. New sensor technologies have enabled real-time streaming of large-volume, multi-scale, and high-dimensional petrophysical data into our databases. Petrophysical data types are extremely diverse, and include numeric curves, arrays, waveforms, images, maps, 3-D volumes, and texts. All data can be indexed with depth (continuous or discrete) or time. Petrophysical data exhibits all the "7V" characteristics of big data, i.e., volume, velocity, variety, variability, veracity, visualization, and value. This paper will give an overview of both theories and applications of machine learning methods as applicable to petrophysical big data analysis. Recent publications indicate that petrophysical data-driven analytics (PDDA) has been emerging as an active sub-discipline of petrophysics. Field examples from the petrophysics literature will be used to illustrate the advantages of machine learning in the following technical areas: (1) Geological facies classification or petrophysical rock typing; (2) Seismic rock properties or rock physics modeling; (3) Petrophysical/geochemical/geomechanical properties prediction; (3) Fast physical modeling of logging tools; (4) Well and reservoir surveillance; (6) Automated data quality control; (7) Pseudo data generation; and (8) Logging or coring operation guidance. The paper will also review the major challenges that need to be overcome before the potentially game-changing value of machine learning for petrophysics discipline can be realized. First, a robust theoretical foundation to support the application of machine leaning to petrophysical interpretation should be established; second, the utility of existing machine learning algorithms must be evaluated and tested in different petrophysical tasks with different data scenarios; third, procedures to control the quality of data used in machine leaning algorithms need to be implemented and the associated uncertainties need to be appropriately addressed. The paper will outlook the future opportunities of enabling advanced data analytics to solve challenging oilfield problems in the era of the 4th industrial revolution (IR4.0).

Publisher

SPE

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3