Chemically-Induced Pressure Pulse: A New Fracturing Technology for Unconventional Reservoirs

Author:

Al-Nakhli Ayman R.

Abstract

Abstract The huge resources of unconventional gas worldwide along with the increasing oil demand make the contribution of unconventional gas to be critical to the world economy. However, one of the major challenges that operators face to produce from unconventional resources is commercial stimulation technique that creates sufficient stimulated reservoir volume. Unconventional reserves trapped within very low permeability formations, such as tight gas, or shale formations, exhibit little or no production, and are thus economically undesirable to develop with existing conventional recovery methods. Such reservoirs require a large fracture network with high fracture conductivity to maximize well performance. One commonly employed technique for stimulating low productivity wells is multi-stage hydraulic fracturing, which is costly and typically involves the injection of high viscosity fluids into the well. Fracturing fluid by itself could form a damaging material for the fracture due to high capillary forces. Thus, additional needs exist for an economical method to enhance production within a tight gas formation. This paper discusses a new stimulation method to increase stimulated reservoir volume (SRV) around wellbore and fracture area, and therefore, improve unconventional gas production. The method entails triggering an exothermic chemical reaction in-situ to generate heat, gas and localized pressure sufficient to create fractures around the wellbore. In controlled experiment, chemical reactants were separately injected into core samples with a minihole and upon mixing inside the core, an exothermic chemical reaction occurred and the resultant heat and gas pressure caused macro-fractures. NMR-porosity imaging showed significant increase in macro pores throughout the core. Additionally Large scale experiments using cement blocks with a simulated wellbore cavity were performed. Once the wellbore was filled with the chemicals and upon introducing a triggering catalyst an in-situ chemical reaction took place which generated heat and gas with sufficient pressure to cause shear fractures in the surrounding rock. These experiments showed extensive fractured and shattered pieces and also provided preliminary design requirements for a field test. The chemical reactants then incorporated into a fracturing gel to simulate creating additional fractured from the main induced hydraulic fracture. The results were very encouraging and the generated high temperature and pressure caused the gel to break thus it is concluded that this technique effectively contribute to fracture cleanup in addition to creating required SRV. The experiments were very successful in proving the new concept of generating SRV in tight gas well and the developed stimulation technique is fairly easy to implement in the field.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3