Gel Dehydration by Spontaneous Imbibition of Brine From Aged Polymer Gel

Author:

Brattekås B..1,Haugen Å..1,Graue A..1,Seright R.S.. S.2

Affiliation:

1. University of Bergen

2. Petroleum Recovery Research Center of New Mexico Tech

Abstract

Summary This work investigates dehydration of polymer gel by capillary imbibition of water bound in gel into a strongly water-wet matrix. Polymer gel is a crosslinked-polymer solution of high water content, where water can leave the gel and propagate through porous media, whereas the large 3D polymer-gel structures cannot. In fractured reservoirs, polymer gel can be used for conformance control by reducing fracture conductivity. Dehydration of polymer gel by spontaneous imbibition (SI) contributes to shrinkage of the gel, which may open parts of the initially gel-filled fracture to flow and significantly reduce the pressure resistance of the gel treatment. SI of water bound in aged Cr(III)-acetate-hydrolized-polyacrcylamide (HPAM) gel was observed and quantified. Oil-saturated chalk-core plugs were submerged in gel, and the rate of SI was measured. Two boundary conditions were tested: all faces open (AFO) and two-end-open oil-water (TEO-OW), where one end was in contact with the imbibing fluid (gel or brine) and the other was in contact with oil. The rate of SI was significantly slower in gel compared with brine, and was highly sensitive to the ratio of matrix volume to surface open to flow, decreasing with increasing ratios. The presence of a dehydrated gel layer on the core surface lowered the rate of imbibition; continuous loss of water to the core increased the gel layer concentration and thus the barrier to flow between the core and fresh gel. Severe gel dehydration and shrinkage up to 99% were observed in the experiments, suggesting that gel treatments may lose efficiency over time in field applications where a potential for SI exists. The implications of gel dehydration by SI, and its relevance in field applications, are discussed for both gel and gelant field treatments.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3