Production Forecasting with the Interwell Interference by Integrating Graph Convolutional and Long Short-Term Memory Neural Network

Author:

Du Enda1,Liu Yuetian2,Cheng Ziyan3,Xue Liang1,Ma Jing1,He Xuan1

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Corresponding author)

3. Exploration and Development Research Institute, Sinopec Shengli Oilfield

Abstract

Summary Accurate production forecasting is an essential task and accompanies the entire process of reservoir development. With the limitation of prediction principles and processes, the traditional approaches are difficult to make rapid predictions. With the development of artificial intelligence, the data-driven model provides an alternative approach for production forecasting. To fully take the impact of interwell interference on production into account, this paper proposes a deep learning-based hybrid model (GCN-LSTM), where graph convolutional network (GCN) is used to capture complicated spatial patterns between each well, and long short-term memory (LSTM) neural network is adopted to extract intricate temporal correlations from historical production data. To implement the proposed model more efficiently, two data preprocessing procedures are performed: Outliers in the data set are removed by using a box plot visualization, and measurement noise is reduced by a wavelet transform. The robustness and applicability of the proposed model are evaluated in two scenarios of different data types with the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE). The results show that the proposed model can effectively capture spatial and temporal correlations to make a rapid and accurate oil production forecast.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3