Evaluation of the CO2 Storage Capacity of the Captain Sandstone Formation

Author:

Jin Min1,Mackay Eric1,Quinn Martyn2,Hitchen Ken2,Akhurst Maxine2

Affiliation:

1. Heriot-Watt University

2. British Geological Survey

Abstract

Abstract The volume of CO2 that can be stored in the Captain Sandstone saline aquifer in the North Sea was investigated by building a geological model and performing numerical simulations. These simulations were also used to calculate the best position for the injection wells, and the migration and ultimate fate of the CO2. The overall migration of CO2 and the pressure response over the entire saline aquifer was studied by the calculated injection of 15 million tonnes CO2 per year. The injection rate was restricted to a maximum of 2.5 million tonnes CO2 per year for each of a possible 12 wells considered. An important objective was to predict how to avoid flow of the injected CO2 toward potential leakage points, such as the sandstone boundaries and faults. The migration of injected CO2 towards existing oil and gas fields was also a determining factor. The summary conclusions are: The Captain Sandstone saline aquifer has significant potential CO2 storage capacity. Even with all boundaries closed to flow, the probable storage capacity is calculated to be about 358 million tonnes, giving a storage efficiency of 0.6% of pore volume, with an expected operating life-span of 15-25 years.The possible storage capacity of the formation may be at least four times greater if the aquifer boundaries are open. This increase would be a result of displacement of salt water, and not CO2.The storage capacity if the sandstone is closed to flow may be increase from 358 to 1668 million tonnes of CO2 by significant additional investment in 15 to 20 water production wells.Injection of up to 2.5 million tonnes CO2 per year in one well has an impact on the pressure throughout the entire formation, and thus interference between different injection locations must be considered.

Publisher

SPE

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3