Three-Phase Pore-Network Modeling for Reservoirs With Arbitrary Wettability

Author:

Al-Dhahli Adnan1,Geiger Sebastian1,van Dijke Marinus I.J.1

Affiliation:

1. Heriot-Watt University

Abstract

Summary Oil reservoirs have structural heterogeneities across multiple length scales and, particularly in carbonates, complexly distributed wettabilities. The interplay of structural and wettability heterogeneities is the fundamental control for sweep efficiency and oil recovery. This interplay must be captured in physically robust flow functions, such as relative permeability and capillary pressure functions. Such flow functions then allow us to choose the best improved-oil-recovery (IOR) or enhanced-oil-recovery (EOR) process and forecast oil recovery with adequate precision. Obtaining flow functions for reservoir rocks with varying wettability is a challenging task, especially when three fluid phases coexist. In this work, we use pore-network modeling, a reliable and physically based simulation tool, to predict three-phase flow functions. We have developed a new pore-scale network model for rocks with variable wettability. Unlike other models, this model combines three new and important features. (1) Our network model comprises a novel thermodynamic criterion for the formation and collapse of oil layers. This captures film/layer flow of oil adequately, which affects the oil relative permeability at low oil saturation. We can therefore predict residual oil more accurately. (2) We implemented multiple displacement chains, in which injection of one phase at the inlet triggers a chain of interface displacements throughout the network. This allows us to accurately model the mobilization of disconnected phase clusters that arise during higher-order [water-alternating-gas (WAG)] floods. Again, this feature is key to a better prediction of residual oil saturation (ROS). (3) Our model takes realistic 3D pore networks extracted from pore-space reconstruction methods and X-ray computerized-tomography (CT) images as input. This preserves both topology and pore shape of the rock, providing better estimates of phase conductivities and relative permeability. We have validated our model by use of available experimental data for a range of wettabilities and demonstrated the impact of single vs. multiple displacement on residual oil. We also used a proof-of-concept study in which we use flow functions for different wettabilities that have been computed with our model in field-scale reservoir simulations to forecast oil recovery during tertiary gas injection. These results are compared with predictions that used empirical flow functions. Flow functions computed by our network model gave higher oil recovery than corresponding flow functions calculated by empirical models; oil recovery increases with decreasing water-wetness. This shows that the pore-scale physics encapsulated in our new network model leads to the right emergent behavior at the reservoir scale.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3