Effect of Surface Wettability on the Miscible Behaviors Of Co2-Hydrocarbon in Shale Nanopores

Author:

Feng Dong1,Chen Zhangxin2,Zhang Zenghua3,Li Peihuan4,Chen Yu5,Wu Keliu1,Li Jing1

Affiliation:

1. China University of Petroleum, Beijing

2. University of Calgary

3. CNOOC Research Institute Co. Ltd.

4. China National Oil and Gas Exploration and Development Company Ltd.

5. China Oilfield Services Limited

Abstract

Abstract The minimum miscible pressure (Pm) of CO2-hydrocarbon mixtures in nanopores is a key parameter for CO2-enhanced shale oil recovery. Although the miscible behaviors of CO2-hydrocarbon mixtures in nanopores have been widely investigated through the simulations and calculations, the heterogeneity of shale components with different affinity to hydrocarbons results in the deviation of traditional predictions and motivates us to investigate how the surface properties influence the CO2-hydrocarbon miscible behaviors in nanopores. In this work, we established a model and framework to determine the wettability-dependent physical phenomena and its impact on the Pm of CO2-hydrocarbon in shale nanopores. First, a generalized scaling rule is established to clarify the potential correlation between critical properties shift and wettability based on the analysis of microscopic interactions (fluid-surface interactions and fluid-fluid interactions). Second, a wettability-dependent SKR EOS is structured and a generalized and practical framework for confined phase behavior with different surface wettability is constructed. Subsequently, the Pm of CO2-hydrocarbon mixtures in confined space with various wettability is evaluated with our model. The calculated results demonstrate that the nanoconfined effects on Pm not only relate to the pore dimension but also depend on the contact angle. In an intermediate-wet nanopore, the minimum miscible pressure approaches the bulk value. In an oil-wet nanopore with a width smaller than 100nm, the minimum miscible pressure is suppressed by the confined effects, and the reduction is further strengthened with a reduction in pore dimension and increase of wall-hydrocarbon affinity. Our work uses a macroscopically measurable parameter (contact angle) to characterize the shift of critical properties derived from the microscopic interactions, and further construct a generalized and practical framework for phase behavior and minimum miscible pressure determination in nanopores with different surface properties. The method and framework can make a significant contribution in the area of upscaling a molecular or nanoscale understanding to a reservoir scale simulation in shale gas/oil research.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3