Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock Properties

Author:

Land Carlon S.1

Affiliation:

1. USBM

Abstract

Abstract Relative permeability functions are developed for both two- and three-phase systems with the saturation changes in the imbibition direction. An empirical relation between residual nonwetting-phase saturation after water imbibition and initial nonwetting-phase saturations is found from published data. From this empirical relation, expressions are obtained for trapped and mobile nonwetting-phase saturations which are used in connection with established theory relating relative permeability to pore-size distribution. The resulting equations yield relative permeability as a function of saturation having characteristics believed to be representative of real systems. The relative permeability of water-wet rocks for both two- and three-phase systems, with the saturation change in the imbibition direction, may be obtained by this method after properly selecting two rock properties: the residual nonwetting-phase saturation after the complete imbibition cycle, and the capillary pressure curve. Introduction Relative permeability is a function of saturation history as well as of saturation. This fact was first pointed out for two-phase flow by Geffen et al. and by Osaba et al. Hysteresis in the relative permeability-saturation relation also has been reported for three-phase systems. Since saturations may change simultaneously in two directions in a three-phase system, four possible relationships arise between relative permeability and saturation for a water-wet system. The four saturation histories of this system were given by Snell as II, ID, DI and DD. I refer to the direction of saturation change (imbibition and drainage), with the first letter of the symbol indicating the direction of change of the water phase. As used in this paper, the second letter of the symbol refers to the direction of saturation change of the gas phase, i.e., D and I indicate an increase and decrease, respectively, in gas saturation. Only a few three-phase relative permeability curves have been published. Leverett and Lewis published three-phase curves for unconsolidated sand, and Snell reported results of several English authors for both drainage and imbibition three-phase relative permeability of unconsolidated sands. Three-phase relative permeability curves for a consolidated sand were published by Caudle et al. for increasing water and gas saturations (ID). Corey et al. reported drainage (DD) three-phase relative permeability for consolidated sands. Recently, Donaldson and Dean and Sarem calculated three- phase relative permeability curves from displacement data on consolidated sands, also for saturation changes in the drainage direction. The only published three - phase relative permeability curves for consolidated sands with saturation changes in the imbibition direction (II) are those of Naar and Wygal. These curves are based on at theoretical study of the model of Wyllie and Gardner as modified by Naar and Henderson. Interest in three-phase relative permeability has increased recently due to the introduction of new recovery methods and refinements in calculation procedures brought about by the use of large-scale digital computers. The scarcity of empirical relations for three-phase flow, and the experimental difficulty encountered in obtaining such data, have made the theoretical approach to this problem attractive. RELATIVE PERMEABILITY AS A FUNCTION OF PORE-SIZE DISTRIBUTION Purcell used pore sizes obtained from mercury-injection capillary pressure data to calculate the permeability of porous solids. Burdine extended the theory by developing a relative permeability-pore size distribution relation containing the correct tortuosity term. SPEJ P. 149ˆ

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3