Rock Typing Based on Wetting-Phase Relative Permeability Data and Critical Pore Sizes

Author:

Yokeley Brandon A.1,Ghanbarian Behzad2,Sahimi Muhammad3

Affiliation:

1. Kansas State University

2. Kansas State University (Corresponding author)

3. University of Southern California

Abstract

Summary Rock typing based on mineralogical, hydraulic, or petrophysical similarities is important to reservoir characterization and simulation. In the literature, classifying rocks using single-phase data has been widely studied. Most methods use porosity and permeability measurements to identify rocks with similar characteristic pore sizes. In this study, we invoke concepts from critical-path analysis (CPA) and propose a new rock-typing method on the basis of two-phase flow data, such as water relative permeability krw. We classify rocks based on their similarities in the critical pore radius rc at the same effective water saturation Se. For this purpose, we first convert the Sw−krw plots to Se−rc curves and then apply a curve clustering method to identify similar rocks. To evaluate the proposed approach, we simulated flow in pore networks with many different pore-scale properties. By varying the pore-throat size distribution, contact angle, pore coordination number, pore-shape distribution, and clay content, we generated a wide range of pore networks. Overall, two-phase flow in 240 pore networks were simulated. In addition to synthetic pore networks, pore networks were generated based on properties of Berea, Mt. Simon, and Fontainebleau sandstones. By analyzing the single-phase simulation results, we identified 8 and 15 rock types using the porosity-formation factor and reciprocal formation factor-permeability data, respectively. However, using the two-phase data, we detect 12 rock groups.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3