Comprehensive Micromodel Study to Evaluate Polymer EOR in Unconsolidated Sand Reservoirs

Author:

Herbas J.G.. G.1,Wegner J..2,Hincapie R.E.. E.2,Födisch H..2,Ganzer L..2,Castillo J.A. Del3,Mugizi Herbert Magyezi4

Affiliation:

1. Xodus Group

2. Clausthal University of Technology

3. Tullow Oil Plc.

4. Petroleum Exploration and Production Department Uganda (PEPD)

Abstract

Abstract In this work micromodels are generated from high resolution images of unconsolidated sands and subsequently used to study polymer EOR processes. Using this approach an almost unlimited number of equal copies can be produced. Moreover, compared to cores, the micromodels enable visual access to the flooding process, facilitating a more detailed process description. Understanding the mechanisms and effects of polymer flooding is essential to avoid failures in field applications. Core studies conducted by commercial laboratories indicated very optimistic oil recovery from polymer injection; therefore, a micromodel study was proposed to investigate the recovery process in detail. The experiments were conducted at reservoir temperature. This study aims to support the design and optimization of polymer EOR projects by experimentally determining polymer performance in terms of production acceleration, incremental production and reduction of the residual oil saturation. Performance is evaluated for a variety of critical input parameters such as polymer rheology, product, and concentration for different average rock properties. The study includes complete rheological characterization of three polymers in terms of flow curves and, in specific cases, viscoelastic effects. The characterization enables the determination of suitable polymer concentrations based on three predetermined viscosity ratios. During the flooding experiment, the oil saturation changes are continuously monitored through image analysis based on which the recovery factor can be calculated. Experimental results obtained from corefloods are compared to those obtained in micromodels, focusing on the following key parameters: (1) Recovery factor, (2) injected pore volume at breakthrough time, (3) residual oil saturation. The paper illustrates how the micromodel experiments help to improve the understanding of oil recovery processes during polymer EOR.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3