Refracturing on Horizontal Wells in the Eagle Ford Shale in South Texas - One Operator's Perspective

Author:

Diakhate Mamadou1,Gazawi Ayman1,Barree Bob2,Cossio Manuel1,Tinnin Beau1,McDonald Beth1,Barzola Gervasio1

Affiliation:

1. Pioneer Natural Resources

2. Barree & Associates

Abstract

Abstract This paper outlines a refrac pilot testing program conducted in the Eagle Ford Shale. As wells in the Eagle Ford accumulate production over time and the pressure around the horizontal wellbore declines, it is important to also consider communication due to offset fracture stimulation. Refracturing trials in older fields, such as the Barnett Shale have yielded a positive enhancement of well performance (Siebrits et al., 2000). This paper evaluates the concept of diverting fluid and proppant along horizontal wells in the Eagle Ford, while considering any communication with older producing wells during refracturing operations. Pumping data acquired during the refracturing is used to explain some of these concepts. Modeling of induced fracture geometry, considering the effect of current pore pressures, is conducted with a fully three-dimensional hydraulic fracture numerical simulator. The pressure of the subject zone may affect the containment and rate of growth of the new fractures, as well as the re-orientation of the existing fractures. Refracturing an old horizontal well with 5,000 ft lateral length and more than 800 existing perforation holes in the casing is very challenging and requires a careful integration of reservoir knowledge, completions skills and experience. The technical team at Pioneer Natural Resources has developed an integrated workflow to design and execute a refracturing job for an Eagle Ford well. The work flow includes: 1) identification of the lower pressure areas along the lateral using surveillance data from the well, such as microseismic, tracer logs, and production data. 2) identifying which wells within the drilling schedule are offsetting older wells that have high cumulative production, and 3) designing a single fracturing job with several sub-stages separated by diverting agents. Each sub-stage is intended to target specific areas along the lateral, which were previously identified as low pressure zones. Volumes and pump schedules will be specific for each candidate and are based on but not limited to proximity to an offset well, lateral length, and existence of geological structures such as faults and fractures in the area. The results from this pilot testing program such as the radioactive tracers and the fracture gradient changes before and after refrac will be evaluated upon completion of the field execution.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3