Abstract
Summary
Minimum miscibility conditions of pressure and enrichment (MMP/MME) have been computed with an equation of state (EOS) for several reservoir-fluid systems exhibiting compositional gradients with depth owing to gravity/chemical equilibrium. MMP/MME conditions are calculated with a multicell algorithm developed by Aaron Zick, where the condensing/vaporizing (C/V) mechanism of developed miscibility is used as the true measure of minimum miscibility conditions when it exists. The Zick algorithm is verified by detailed one-dimensional (1D) slimtube simulations with elimination of numerical dispersion. The miscibility conditions based on the traditional vaporizing-gas-drive (VGD) mechanism are also given for the sake of comparison, where it is typically found that this mechanism overpredicts conditions of miscibility.
Significant variations in MMP and MME with depth exist for reservoirs with typical compositional gradients, particularly for near-critical oil reservoirs and gas-condensate reservoirs where the C/V mechanism exists. An important practical implication of these results is that miscible displacement in gas-condensate reservoirs can be achieved far below the initial dewpoint pressure. The requirement is that the injection gas (slug) be enriched somewhat beyond a typical separator gas composition and that the C/V miscibility mechanism exist. This behavior results in many more gas-condensate reservoirs being viable candidates for miscible gas cycling than previously assumed, and at cycling conditions with lower cost requirements (i.e., lower pressures) and greater operational flexibility (e.g., cycling only during summer months).
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献