Completion Quality Classes to Characterize Basin Complexity: New Framework to Incorporate Localized and Regional Reservoir Heterogeneity into Field Exploration and Development Optimization

Author:

Gurmen M. Nihat1,Fredd Christopher N.1,Batmaz Taner1,Kurniadi Stevanus dwi1,Zeidi Omar Al1,Kanneganti Kousic1,Nasreldin Gaisoni1,Khan Safdar1,Tineo Roberto1,Subbiah Surej Kumar1

Affiliation:

1. Schlumberger

Abstract

Abstract Innovation and advances in technology have enabled the industry to exploit lower-permeability and more-complex reservoirs around the world. Approaches such as horizontal drilling and multistage hydraulic fracturing have expanded the envelope for economic viability. However, along with enabling economic viability in new basins come new challenges. Such is the case in the Middle East and North Africa regions, where basin complexity arising from tectonics and complicated geology is creating a difficult geomechanical environment that is impacting the success of hydraulic fracturing operations in tight reservoirs and unconventional resources. The impact has been significant, including the inability to initiate hydraulic fractures, fracture placement issues, fracture connectivity limitations, casing deformation problems, and production impairment challenges. Completion quality (CQ) relates to the ability to generate the required hydraulic fracture surface area and sustained fracture conductivity that will permit hydrocarbon flow from the formation to the wellbore at economic rates. It groups parameters related to the in-situ state of stress (including ordering, orientation, and amount of anisotropy), elastic properties (e.g., Young's modulus and Poisson's ratio), pore pressure, and the presence of natural fractures and faults. Collectively, this group of properties impacts many key aspects determining the geometry of the fracture, particularly lateral extent and vertical containment. Heterogeneity in CQ often necessitates customizing well placement and completion designs based on regional or local variability. This customization is particularly important to address local heterogeneity in the stress state and horizontal features in the rock fabric (e.g., laminations, weak interfaces, and natural fractures) that have been identified as key contributors impacting the success of hydraulic fracture treatments. Given the observation that a wide range of CQ heterogeneity was creating a complex impact on hydraulic fracture performance, CQ classes were introduced to characterize the risk of developing hydraulic fracture complexity in the horizontal plane and the associated impact on well delivery and production performance. They indicate the expected hydraulic fracture geometry at a given location and are analyzed in the context of a wellbore trajectory in a given local stress state. CQ class 1 denotes locations where conditions lead to the formation of vertical hydraulic fractures, CQ class 2 denotes locations where conditions lead to the formation of a T-shaped or twist/turn in the hydraulic fracture, and CQ class 3 denotes locations where conditions lead to the formation of hydraulic fracture with predominantly horizontal components. Wellbore measurements indicate that these CQ classes can vary along the length of the wellbore, and 3D geomechanical studies indicate that they can vary spatially across a basin. By understanding this variability in CQ class, well placement and completion design strategies can be optimized to overcome reservoirheterogeneity and enable successful hydraulic fracturing in more challenging environments. This paper introduces the novel concept of CQ class to characterize basin complexity; shows examples of CQ class variability from around the world; and provides integrated drilling, completion, and stimulation strategies to mitigate the risks to hydraulic fracturing operations and optimize production performance.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3