Abstract
Abstract
Most traditional polycrystalline diamond compact (PDC) cutting elements have a flat polycrystalline diamond table at the end of cylindrically shaped tungsten carbide body. During drilling, the flat diamond table engages the formation and shears the rock layer by layer. A new ridge-shaped diamond cutting element (RDE) has a similar cylindrical tungsten carbide base; however, the diamond table is shaped like a saddle with an elongated ridge running through the center of the diamond table and normal to the cutter axis. The intended cutting portion, the "ridge," engages the formation to fracture and shear the rock at the same time. The design intent was to create a unique cutting element that could combine the crush action of a traditional roller cone insert and the shearing action of a conventional PDC cutter. The new cutting elements were tested in the laboratory against standard flat PDC cutters in a rock-cutting evaluation, and later the new elements were applied to PDC bits and run under real drilling conditions.
The laboratory rock-scrape tests indicated that the new cutting element not only enables the cutter to efficiently shear formation in the same way as a conventional PDC cutter, but also delivers a crushing action similar to a roller cone insert. Preliminary results indicated a reduction of roughly 40% in both cutting force and vertical force on the new ridged diamond element cutters (RDE) over a conventional PDC cutter. Similar findings were also observed during the rock-shearing test on a vertical turret lathe (VTL). Subsequent field tests in multiple areas in North America have produced faster rates of penetration (ROP) in most of the cases. The trials indicate that the new cutting element is efficient at removing rock, and a bit equipped with these elements requires less mechanical specific energy (MSE) during drilling than does a bit with a conventional PDC cutter. In addition, the reduced cutting forces reduces bit torque and thus improves the drilling tools’ life and the bit directional performance. Field data has proven this technology improves drilling performance in terms of ROP and footage over the current PDC bits fitted with traditional flat PDC cutters.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献