Laboratory Assessment and Field Pilot of Near Miscible CO2 Injection for IOR and Storage in a Tight Oil Reservoir of ShengLi Oilfield China

Author:

Ren Bo1,Xu Yang1,Niu Baolun1,Ren Shaoran1,Li Xiangliang2,Guo Ping2,Song Xinwang2

Affiliation:

1. China University of Petroleum, China

2. Geology Research Institue of ShengLi Oilfield, Sinopec, China

Abstract

Abstract Gas injection into tight oil reservoirs, as a secondary recovery technique, can be favorable and promising in terms of high gas injectivity and good displacement/sweeping efficiency over water injection. Particularly, CO2 injection is the best option due to its superior miscibility effect with oil and in consideration of geological storage of the greenhouse gas. In this study, CO2 injection into a tight oil reservoir for IOR is assessed and a pilot project is underway. The reservoir is located in the G89 Block of Shengli Oilfield East China, which has very poor water injectivity due to very low permeability of less than 5 mD in average, and has been producing via natural depletion since 2005. The original reservoir pressure was over 40 MPa, and the reservoir temperature of 126  . A CO2 injection and storage program has been proposed, and CO2 will be from a coal-fired power plant 30 km away under a Sinopec’s CCS (Carbon Capture and Storage) scheme. Laboratory investigation includes PVT experiments, slim tube test and core flooding/displacement experiments, in order to study the miscibility effect and displacement efficiency via CO2 injection at various conditions. Reservoir simulations were performed to predict the IOR potentials of CO2 injection at different pressures, namely at immiscible, miscible and near-miscible modes. The MMP (Minimum Miscibility Pressure) of the reservoir oil is determined as over 29 MPa, while the reservoir pressure at the beginning of CO2 injection was around 23 MPa after several years’ depletion. Therefore, CO2 flooding at a near miscible mode will prevail. A field pilot of CO2 injection at current reservoir conditions (at near-miscible mode) is designed and its performance is presented in the paper.

Publisher

SPE

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3