Novel High-Efficient Key Component of Steel Corrosion Inhibitors Formulation for Acidification: Indolizine Derivatives of the Conventional N-Heterocyclic Quaternary Ammonium Salts

Author:

Yang Zhen1,Wang Yefei1,Finšgar Matjaž2,Wu Jiajia3,Ding Wengang4

Affiliation:

1. China University of Petroleum, East China

2. Faculty of chemistry and chemical engineering, University of Maribor

3. Institute of Oceanology, Chinese Academy of Sciences

4. COSL, China Oilfield Services Ltd. Production Optimization Business Division

Abstract

Abstract Acidizing, the widely used technique for well stimulation, requires a great consumption of effective Corrosion Inhibitors (CIs), due to the severe and fast corrosion of metallic equipment caused by strong hot acid as soon as the acidizing fluids are pumping down to reservoir. This paper presents a new concept of indolizine derivative inhibitors with remarkable inhibition effectiveness for steel under acidizing condition, which will reduce the cost and environmental burden of acidizing CIs significantly. Indolizine derivatives of several quinolinium salts (serves as main component of currently used acidizing CIs) were synthesized respectively through an optimized mild procedure from quinoline and different halides. The inhibition of the new inhibitors for N80 steel were evaluated in hot 15 wt.% HCl by gravimetric and electrochemical analysis, while their corrosion prevention mechanism were studied. Surface adsorption and thermodynamic aspect of inhibition process were also investigated. Synergistic inhibition performances of the indolizine derivatives with surfactant, KI and other additives were examined. For the synthesis step, a relatively high yield of the crude products were reported. Inhibition assessment results showed that compared with their quinolinium salt precursors, the dimer derivative can dramatically mitigate the corrosion speed and exhibit considerable inhibition efficiencies even at an extremely low dosage. The results obtained from gravimetric tests, electrochemical methods as well as the surface analysis are in good agreement and confirmed the well-behaved anti-corrosion properties of the derivatives. Conclusion from biotoxicity experiments showed that compared with their precursor quinolinium salts, both the indolizine derivatives and the original quinolinium salts share almost the same EC50 values, revealing the advantages in eco-friendly aspect. Mechanism study reveals that the new compounds can be characterized as cationic "mixed type" and the special molecular structure (conjugated aromatic moiety) may contribute a lot to their remarkable inhibition. Besides, the studied dimer derivatives also presents a good solubility and thermo-stability in acid solution. The amazing synergistic inhibition of indolizine derivative obviously shows that the inhibitive mixture could be utilized as new effective CI for acidizing. The inhibition of conventional quinoline salts CIs would get greatly updated after been converted to their indolizine dimer derivatives. This provides a smart solution for exploring innovative acidizing CI with better protection efficiency. The use of indolizine derivatives may largely minimize the total amount as well as the total expenses of CIs in acidizing fluids and showing good prospects in replacement of the current main components of acidizing CIs in the near future.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3