Predicting The Sulphate Content Of Produced Water In Reservoirs Under Seawater Flood And Containing Calcium-Rich Formation Water

Author:

Wright Rob1,McCartney Ross Andrew2,Sørhaug E.3

Affiliation:

1. Talisman Energy UK Limited

2. Geoscience Ltd.

3. Talisman Energy Norge AS

Abstract

Abstract Sulphate concentration of produced water is a controlling factor in the scaling tendency of sulphate minerals (BaSO4, SrSO4 and CaSO4). In reservoirs under seawater flood, where the formation water is calcium-rich (>5,000 mg/l), and the reservoir temperature is above moderate levels (>100oC), produced water sulphate concentrations, sulphate mineral scaling potentials and therefore scale mitigation costs are often lower than expected due to deposition of sulphate scaling minerals in the reservoir. To obtain more realistic predictions of sulphate mineral scaling potentials and scale mitigation costs there is significant interest in trying to understand the factors controlling produced water sulphate concentrations and to simulate these data. Various models have been used to simulate produced water sulphate analyses but only reactive transport reservoir simulators incorporate the capability to model the most important factors determining produced water sulphate concentrations: reservoir reactions and mixing in and around the wellbore. However, even in this case the underlying reservoir models are often uncertain and the approach costly and time-consuming. In this study we present a new, two-water mixing model which assumes that water entering a production well is simply a mixture offormation water andan equilibrated mixture of formation water and seawater from which sulphates have precipitated in the reservoir (mixing zone water). This model can be used to explain trends in produced water scaling ions where lower than expected sulphate mineral scaling potentials are observed. By matching trends in produced water scaling ions, the model can be used to determine the variation in production proportions of the two waters, their compositions and seawater contents over time. When applied to wells of the Clyde Field, trends in sulphate and barium produced water analyses are found to reflect a reduction in the proportion of formation water and an increase in that of mixing zone water (and its seawater content) over time. For Gyda wells, the same results were obtained except that later in production, production of formation water ceases and two different mixing zone waters are produced. The model results are what would be expected for wells being progressively affected by a seawater flood and they have also been used to provide reasonable predictions of concentrations of other scaling ions in the produced water. Therefore, although the model is a significant simplification of mixing conditions in and around the well, it does appear to provide reasonable results that are easily obtained. The model results have a number of possible uses includingexplaining trends in produced water scaling ions and lower than expected sulphate mineral scaling potentials,providing alternative data for undertaking well scaling potential calculations and determination of laboratory MICs,helping identify inadequately preserved samples and (d) potentially constraining the reservoir model.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3