Numerical Simulation Study on the Applicability of Relative Permeability Modifiers for Water-Shutoff in Oil Production Wells

Author:

Alfarge Dheiaa1,Wei Mingzhen2,Bai Baojun2,Almansour Abdullah3

Affiliation:

1. Iraqi Ministry of Oil, Missouri University of Science and Technology

2. Missouri University of Science and Technology

3. King Abdulaziz City for Science and Technology

Abstract

Abstract Disproportionate Permeability Reduction (DPR) is often used as a water-shutoff treatment in production wells when conventional solutions such as mechanical isolations are difficult to perform. Although this property has been well documented by different investigators, the performance of DPR treatments in field applications has varied between success and failure without understandable reasons. This work investigated DPR performance in different scenarios to see when, where and at which conditions DPR treatments can give better results. Numerical simulation methods were used to simulate different scenarios happening in oil and gas fields such as five-spot pattern system and linear-system, with different number of layers, with and without crossflow. The possibility of using DPR treatment in hydraulically-fractured reservoirs was also investigated since many reports indicated that there is an increase in water production after some oil and gas reservoirs being hydraulically-fractured. Moreover, the physical reasoning behind the variations in DPR performance for different scenarios has been extensively discussed. The results explored that DPR performance was excellent in both of water-cut reduction and oil-recovery improvement when the flow regime was viscous dominated (viscous-gravity number<0.1). On the other hand, when the flow regime was gravity dominated (viscous-gravity number >10), the effective period of DPR treatment was short-term remedy. Secondly, when the high-K layer is existed at the lower-zone of oil or gas reservoir is a good candidate for DPR treatment as compared when the high-K layer located at the upper zone. Furthermore, selecting the correct time to perform DPR treatments generally has a significant role to mitigate water production. Finally, the dimensions of treated fracture are the key components to get a successful DPR-treatment in fractured reservoirs.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3