Novel Expanding Solvent-SAGD Process "ES-SAGD"

Author:

Nasr T.N.1,Beaulieu G.1,Golbeck H.1,Heck G.1

Affiliation:

1. Alberta Research Council

Abstract

Abstract The steam assisted gravity drainage (SAGD) process has been successfully tested in field pilots, and commercial applications are currently underway by a number of oil companies. The process yields higher oil rates and faster reservoir depletion, as compared to other in situ oil recovery processes. Current developments of the SAGD process are aimed at improving oil rates, improving oil-to-steam ratios "OSR," reducing energy, and minimizing water disposal requirements. In addition to SAGD, progress has been made in the development of solvent injection processes. These processes result in lower oil rates and energy, requirements as compared to SAGD. At the present time, limited field results are available for the solvent processes to allow for adequate evaluation of field performance. A novel approach for combining the benefits of steam and solvents in the recovery of heavy oil and bitumen has been undertaken at the Alberta Research Council (ARC). A newly patented Expanding Solvent-SAGD "ES-SAGD" process has been developed. The process has been successfully field-tested and resulted in improved oil rates, improved OSR, and lower energy and water requirements as compared to SAGD. The paper discusses the concept and laboratory testing of the ES-SAGD process. Introduction The most promising in situ thermal recovery technology is the SAGD process. In this process, two horizontal wells separated by a vertical distance are placed near the bottom of the formation. The top horizontal well is used to inject steam and the bottom well is used to collect the produced liquids (formation water, condensate, and oil). Following the success of the UTF project at Fort McMurray, Alberta, a number of field pilots are in progress in other heavy oil reservoirs in western Canada (Alberta and Saskatchewan), and around the world. These pilots tested the use of surface accessed horizontal wells and extended SAGD applications to problem reservoirs. These reservoirs often have lower permeabilities, are deeper, have bottom water transition zones, with initial gas-saturated "live" oil and top water/gas caps. In Alberta, the success of these pilots has led to a number of commercial SAGD projects that are currently underway. Current developments of the SAGD process at ARC are aimed at improving oil rates, improving OSR, reducing energy, and minimizing water disposal requirements. Progress has been made in the development of combined steam-solvent injection processes, a novel approach for combining the benefits of steam and solvents in the recovery of heavy oil and bitumen. A newly patented(1) Expanding Solvent-SAGD "ES-SAGD" process has been successfully field-tested, and has resulted in improved oil rates and OSR, and lower energy and water requirements as compared to conventional SAGD. The ES-SAGD concept and laboratory testing using the high pressure/high temperature experimental facilities at ARC are presented in this paper. The ES-SAGD Concept Figure 1 illustrates the ES-SAGD concept. In this concept, a hydrocarbon additive at low concentration is co-injected with steam in a gravity-dominated process, similar to the SAGD process. The hydrocarbon additive is selected in such a way that it would evaporate and condense at the same conditions as the water phase.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3